DRAFT ENVIRONMENTAL IMPACT STATEMENT

408 PERMISSION AND 404 PERMIT TO THREE RIVERS LEVEE IMPROVEMENT AUTHORITY

FOR THE

FEATHER RIVER LEVEE REPAIR PROJECT, CALIFORNIA SEGMENT 2

APPENDIX D – PLANNED RESOLUTION OF POTENTIAL ENVIRONMENTAL HAZARDS IN THE PROJECT AREA

DRAFT ENVIRONMENTAL IMPACT STATEMENT

408 PERMISSION AND 404 PERMIT TO THREE RIVERS LEVEE IMPROVEMENT AUTHORITY

FOR THE

FEATHER RIVER LEVEE REPAIR PROJECT, CALIFORNIA SEGMENT 2

APPENDIX D – PLANNED RESOLUTION OF POTENTIAL ENVIRONMENTAL HAZARDS IN THE PROJECT AREA

Memo

To: John Suazo USACE Planning Branch, Brian Vierria USACE Regulatory Branch

From: Anja Kelsey, TRLIA Environmental Manager

Date: 2/28/2008

Re: Feather River Setback, Phase II Site Assessment Actions by TRLIA

Three Rivers Levee Improvement Authority (TRLIA) completed a Phase I Environmental Site Assessment (Phase I ESA) in August 2007 for TRLIA's Feather River Levee Segment 2 Setback Project, as part of a CEQA mitigation requirement for the Feather River Levee Repair Project (FRLRP). In follow-up to the Phase 1 ESA recommendations, TRLIA performed soil sampling and chemical testing of soils from the setback area and other potential borrow areas in general conformance with the requirements for a Phase 2 Site Assessment per ASTM E1903. A memorandum was prepared and included in the January 2008 Geotechnical Data Report (Volume 5, Appendix F8). A copy of this memorandum is provided in Attachment 1.

A summary of the environmental conditions identified in the Phase I ESA is presented in tabular form in Attachment 2. This table also details the Phase I ESA recommendations to resolve these environmental conditions and TRLIA's proposed approach to implement the recommendations. In summary, TRLIA proposes to proceed to investigate the two former underground storage tank (UST) locations within the project area to confirm that the USTs were removed as reported and to screen the nearby soils for the potential presence of residual petroleum contamination:

- 2018 Feather River Boulevard, Flores Property (APN#016-010-010); an unknown number of UST's were identified on this property and removed after 1988, according to the Yuba County Environmental Health Department. No leakage was reported.
- 712 Murphy Road, Danna and Danna Inc. (APN#013-00-025); a UST was located on the former dairy farm at this address and was removed around 1990. The condition of the surrounding soil is not known. No leakage was reported.

This additional Phase 2 activity will include (1) investigating the reported locations of the removed tanks through the excavation of several test pits and (2) field screening and classification of soils sampled from the test pits. It there is evidence of contamination, TRLA will conduct chemical testing to determine if the concentrations of contaminants exceed allowable levels and develop plans for the cleanup of the these project sites. TRLIA is currently finalizing the scope for the initial field work and sampling, which are planned to be performed in March 2008.

As indicated in Attachment 2, remediation of all other identified environmental conditions affecting the project site will be implemented by TRLIA's construction contractor under the supervision of TRLIA inspectors. The work primarily will include the removal and off-site disposal of above-ground tanks, containers, drums, surficial stained soils, and non-agricultural burning ash-and-debris piles. Upon completion of the removals, TRLIA inspectors will perform soil screening to confirm petroleum staining was limited to the surface and has been removed. If there is evidence of additional contamination (e.g. stained soils, petroleum odors, etc), TRLIA will conduct environmental sampling and testing of soil samples and implement further cleanup activities.

Please call me if you have any questions. Anja Kelsey

Attachments: 1- Memorandum on Environmental Test Pits

2- Planned Resolution – Phase 1 ESA Recommendations

Memo

To: Alberto Pujol, Dan Wanket

From: Andrew Adinolfi

Date: 12/28/2007

Re: Environmental Test Pits, Proposed Northwestern, Eastern, and Ella Road Borrow Areas

Feather River Setback Levee

GEI Project Number - 050115, Task 5015

This memorandum presents the results of soil sampling and chemical testing performed in September and November 2007 within the proposed Northwestern, Eastern, and Ella Road Borrow Areas for the Feather River Setback Levee. The purpose of sampling was to evaluate soil for suitability as borrow material relative to the presence of hazardous materials.

Based on the data and analyses presented in this memo, the subject material is environmentally suitable for its intended use as borrow for the setback levee project. In summary, no pesticides, PCBs, or cyanide were detected in any of the samples. Metals were detected at levels that are attributable to natural conditions for the area, and their presence in borrow material poses no increase in human health or ecological risk.

Field Activities Summary

The proposed borrow areas were inspected in June 2007 as part of the Phase I Environmental site Assessment (ESA). The test pit program was implemented in accordance with a work plan dated September 11, 2007, except that test pit locations were modified slightly due to a reduction in size of the Northwestern borrow area, and the addition of a relatively small proposed borrow area (Ella Road Borrow Area). Environmental test pits in the Northwestern borrow area were relocated to be within the redrawn location. Two environmental test pits were excavated within the small Ella Road borrow area.

Samples were collected from the excavated test pits using a backhoe. Environmental samples were collected for chemical analysis from the test pits listed below (Figure 1).

Number of Test Pits	Site	Test Pits	Date
2	Ella Road	TP-ENV-ELLA-505, 509	9/25/07
8	Northwestern	TP-ENV-515, 516, 517 TP-ENV-NAUMES 317, 338, 391, 425, 499	11/2/07 and 11/6/07
5	Eastern	TP-ENV-518 through 522	11/5/07 and 11/6/07

One sample was collected for chemical analysis per test pit listed above. Samples were composited from all depths excluding top soil. Nordic Industries (Olivehurst, California) and Sannar's Down Under Construction (Loma Rica, California) performed the excavations.

Phase I Environmental Site Assessment and Test Pit Observations

A Phase I ESA was performed for the area of the proposed setback levee project, including the potential borrow areas. The ESA included site historical research, regulatory file reviews, site inspections, and

owner interviews. Based on the ESA findings, there are no indications that uncontained hazardous materials are present in significant amounts within the borrow areas. No visual evidence of hazardous materials was observed in the proposed borrow areas during a site inspection, with the following exceptions:

- Petroleum storage in aboveground and underground storage tanks at 2267 Feather River Boulevard, and on land known as the Cummings property (TRLIA Parcel 121d) on Country Club Avo
- Pesticide storage in small quantities at 2267 Feather River Boulevard.

No significant soil staining was observed in the area of the petroleum storage tanks. Residences are located within the proposed Eastern borrow area along Country Club Road. The potential borrow areas have been used for agricultural purposes, primarily for orchards and cattle. There is no indication that industries have been present within or near the proposed borrow areas, or that the borrow areas contain anthropogenic fill. Historic information indicates that elevated mercury levels may be present regionally due to its use in gold mining and associated discharges of tailings into the area watershed. Further details are provided in the Phase I ESA.

Soil observed in the borrow areas generally consisted of top soil underlain by tan to olive-colored silty sand and sandy silt. No unnatural odors or staining were observed in the test pits. Test pit TP-520 was located approximately 330 east of the farmhouse at 2267 Feather River Boulevard and associated fuel storage. TP-518 was located in the vicinity of a farmhouse that was recently demolished. No visual or olfactory evidence of petroleum was apparent in the test pits near farm buildings and facilities, or at any other test pit in the proposed borrow areas. No evidence of hazardous materials was apparent in any of the 15 subject test pits, or in any other of the geotechnical test pits excavated in the proposed borrow areas.

Analytical Results Summary

As specified in the work plan, soil samples were analyzed by Alpha Labs of Sparks, Nevada (California-certified) for:

- Pesticides
- Polychlorinated Biphenyls (PCBs)
- RCRA Priority Pollutant 13 Metals
- Total Cyanide

Table 1 is a summary of the chemical testing results. Analytical testing results are included as Attachment A.

Comparison to Regulatory Guidance

Chemical testing results were compared to regional background concentrations [Hunter et al., 2005; USGS, 2001], human health screening criteria (EPA Region 9 Preliminary Remediation Goals [PRGs]), and ecological screening criteria [EPA, 2007; Efroymson et al, 1997a,b&c]. The comparisons including calculation details are shown in Table 2.

Exposure Point Concentrations (EPCs) were developed from the testing results. EPCs represent a concentration at which receptors (humans, wildlife, and aquatic life) that may come in contact with levee soil may be exposed to. If an analyte was not detected in a sample, a value of one-half of the detection limit was used to represent the sample concentration. If all data were all nondetect, the EPC was the average of ½ the reporting limit. If the detection frequency was 85% or higher, the upper 95th confidence limit (UCL) was calculated. If the detection frequency was less than 85%, the maximum detected value was used to represent the EPC. Averaging was deemed appropriate where the data showed a normal

distribution or all data were nondetect. Arsenic, cadmium and mercury were detected infrequently; therefore, their maximum detected concentrations were used as the EPCs.

As shown in Table 2, no pesticides, PCBs, or cyanide was detected in any of the samples. The detection limits are below the screening criteria presented in Table 1. There is no indication that any regulatory or screening guidance values are exceeded. Because the method detection limits (MDLs) for these compounds are below the PRGs, the soil can be deemed suitable for on-site use as borrow relative to these compounds.

All metals concentrations were below the EPA human health risk-based PRGs except for iron, for which the EPC slightly exceeded the PRG but is consistent with background as described below. The PRGs are guidance levels establishing cleanup goals for contaminated sites to restore properties for residential use.

Metals EPCs were within the range of published background concentrations [Hunter et al. 2005; Shacklette, 1984] except for cadmium, for which the exceedance is considered minor. Cadmium was detected in only one of the 15 samples at 4.9 mg/kg, and because it was not detected in any other samples, the single detection was used as the EPC. The EPC for cadmium is on the same order of magnitude as the background, and below the PRG. There is no indication of a significant unnatural source of cadmium in the vicinity of the detection. The location of the cadmium detection (TP518) is in the vicinity of a former farmhouse on property owned by J.T.S. (formerly owned by Heir) that has historically been used as an orchard.

The EPC for mercury is consistent with published background levels for the area. The mercury is likely naturally occurring, but may be in part present to due the past historical use of mercury in processing gold ore, as described in the Phase I ESA.

As shown in Table 2, the EPCs for chromium and nickel are slightly above background levels published by Hunter [Hunter et al., 2005]; however, regional data presented by Shacklette [Shacklette, 1984] indicate that background concentrations of cadmium and nickel are higher in northern and northwestern California, including the area of the site. The EPCs for chromium and nickel are consistent with the regional data for this area.

Metals EPCs were within the range of ecological screening criteria except for cadmium, chromium, copper, mercury and nickel. As described above, chromium, copper, mercury, and nickel concentrations are consistent with background or regional concentrations in surficial soil. Because soil is not proposed for use in an area with potentially different background concentrations, no increased risk of exposure to these metals will be posed by the use of the subject soil as borrow material. The presence of cadmium at one location is not likely to cause significant exposure concerns, especially because soil with elevated cadmium levels will be in combination with the remainder of the proposed borrow material in which no cadmium was detected. There is no indication that the cadmium is present in large quantities as cadmium is not used in pesticides and there are no industries in the area of TP518. No adverse effects on wildlife in the areas proposed for borrow have been observed.

Conclusions

No evidence of hazardous materials was identified in the potential borrow areas during a Phase I ESA and in the test pits summarized herein, with the exception of petroleum storage tanks and pesticide storage tanks as described in the Phase I ESA report. Chemical testing of 15 soil samples from within the potential borrow areas indicate that no detectable concentrations of pesticides, PCBs, or cyanide are present. Metals detected in the soil appear to be present at naturally occurring levels, or, in the case of mercury, occurring as a regional condition that would pose no increased human health or ecological risk. Based on the data and analyses presented in this memo, the subject material is environmentally suitable for its intended use as borrow for the levee setback project.

References

Efroymson, R.A., M.E. Will, G.W. Suter II and A.C. Wooten, 1997a, Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. ES/ER/TM-85/R3. Oak Ridge National Laboratory, Oak Ridge, TN.

Efroymson, R.A., M.E. Will, and G.W. Suter II, 1997b, Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. ES/ER/TM-126/R2. Oak Ridge National Laboratory, Oak Ridge, TN.

Efroymson, R.A., G.W. Suter II, B.E. Sample and D.S. Jones, 1997c, *Preliminary Remediation Goals for Ecological Endpoints*. ES/ER/TM-162/R2. Oak Ridge National Laboratory, Oak Ridge, TN.

GEI, 2007. Phase 4 Feather River Levee Repair Project, Feather River Setback Levee, Phase I Environmental Site Assessment, August 20, 2007.

Hunter et al, 2005. Inorganic Chemicals in Ground Water and Soil: Background Concentrations at California Air Force Bases., P.M. Hunter, Air Force Center for Environmental Excellence, Presented at 44th Annual Meeting of the Society of Toxicology, New Orleans, Louisiana, 10 March 2005.

Shacklette, 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, U.S. Geological Survey Professional Paper 1270

USGS, 2001. Geochemical Landscapes of the Conterminous United States – New Map Presentations for 22 Elements, U.S. Geological Survey Professional Paper 1648, Manuscript approved for publication July 31, 2001.

United States Environmental Protection Agency (USEPA), 2004. Preliminary Remedial Goal Tables. Region 9.

United States Environmental Protection Agency (USEPA), 2007. ProUCL, vs 4.

United States Environmental Protection Agency (USEPA), 2007, Ecological Soil Screening Levels, viewed 19 December 2007, < http://www.epa.gov/ecotox/ecossl/>.

Attachments

Table 1 – Summary of Borrow Area Test Pit Samples

Table 2 – Statistical Analysis of Borrow Area Test Pit Samples

Figure 1 – Borrow Area Sample Location Plan

Attachment A - Analytical Testing Results

Table 1 - Summary of Borrow Area Test Pit Samples Feather River Setback Levee Marysville, California

Borrow Location		Fila	Road				North	western						Eastern		
Borrow Education		Liiu	l				I	Western .						Lustern		T
	Method	TP-ENV-ELLA-	TP-ENV-ELLA-				TP-ENV-	TP-ENV-	TP-ENV-	TP-ENV-	TP-ENV-					
Sample Location:		505	509	TP-ENV-515	TP-ENV-516	TP-ENV-517	NAUMES-317	NAUMES-338	NAUMES-391	NAUMES-425	NAUMES-499	TP-ENV-518	TP-ENV-519	TP-ENV-520	TP-ENV-521	TP-ENV-522
Sample Date:		9/25/2007	9/25/2007	11/6/2007	11/6/2007	11/6/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/2/2007	11/5/2007	11/6/2007	11/5/2007	11/5/2007	11/5/2007
PCBs (mg/kg)	8081															1
Aroclor 1016		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1221		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Aroclor 1232		<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
Aroclor 1242		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Aroclor 1248		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Aroclor 1254		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aroclor 1260		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Pesticides (mg/kg)	8082															1
Aldrin		< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Alpha-bhc		<0.004	<0.004	<0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Beta-BHC		< 0.0005	< 0.0005	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Chlordane		<0.01	<0.01	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
DDD,4,4-		< 0.0075	< 0.0075	< 0.0375	< 0.0375	<0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
DDE,4,4-		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
DDT,4,4-		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Delta-BHC		< 0.005	< 0.005	<0.025	< 0.025	< 0.025	<0.025	< 0.025	<0.025	<0.025	<0.025	< 0.025	< 0.025	<0.025	< 0.025	< 0.025
Dieldrin		< 0.005	0.0005	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Endosulfan I		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Endosulfan II		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Endosulfan sulfate		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Endrin		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Endrin aldehyde		< 0.0075	< 0.0075	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Gamma-BHC		< 0.005	< 0.005	< 0.025	< 0.025	<0.025	<0.025	< 0.025	<0.025	< 0.025	<0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Heptachlor		< 0.005	< 0.005	<0.0125	< 0.0125	< 0.0125	<0.0125	< 0.0125	< 0.0125	<0.0125	<0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125	< 0.0125
Heptachlor epoxide		< 0.002	< 0.002	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Methoxychlor		< 0.0075	< 0.0075	< 0.0375		< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375	< 0.0375
Mirex		< 0.005	< 0.005	< 0.025	<0.025	< 0.025	<0.025	< 0.025	< 0.025		<0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Toxaphene		<0.01	<0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Metals (mg/kg)	6020															1
Antimony		<0.5	3.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Arsenic		8.7	12	3.3		8.3	9.1	9.4	5.2		5.8	7.2	3.9	6.8	4.2	5.3
Beryllium		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cadmium		<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<4.9	<0.5	<0.5	<0.5	<0.5
Chromium		80	75	81	86	61	72	64	130	92	77	49	43	41	34	50
Copper		37	41	33	44	34	40	37	40	44	43	48	32	32	27	44
Iron		32000	36000	25000	27000	25000	24000	24000	30000	29000	30000	33000	24000	24000	22000	30000
Manganese		650	460	360	460	360	440	410	540	830	610	460	310	310	400	480
Mercury		<0.1	<0.1	<0.1	<0.1	0.41	<0.1	<0.25	<0.1		<0.1	<0.1	0.1	<0.1	<0.1	<0.1
Nickel		66	54	91	91	52	77	60	100	100	87	42	45	48	37	54
Selenium		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc		55		50		43	49	47	56		53	49	43	36	37	57
Total Cvanide (mg/kg)	9010b								İ		İ		İ	İ		1
Cyanide, Total		<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Notes:			i .		i .					1						

Notes:
All reported values in milligrams per kilogram (mg/kg).

Table 2 - Statistical Analysis of Borrow Area Test Pit Samples Feather River Setback Levee Marysville, California

Proguency Distribution Complete Comp	Analyte	Detection	Detected Concentration	EPC Calculation Method	EPC	Published	Background	Human Health Screening Value	Eco	ological Screeni	ng Value (r	mg/kg)	EPC >	EPC> SVs
Accept 1016	Allalyte	Frequency		LFG Calculation Method	(mg/kg)	(Shacklette,	(Hunter et al.,	PRG	Plants	Invertebrates	Birds	Mammals	BKG?	LFC2 3VS
Acolog 1221 0.00%	PCBs (mg/kg)						•				='	•		
Acordor 1/3/22	Aroclor 1016	0.00%	NA	Average	0.005	NE	NE			NE	NE	NE	NA	NE
Acodor 1242	Aroclor 1221	0.00%	NA	Average	0.005				NE	NE		NE		
Acodor 1248	Aroclor 1232	0.00%	NA	Average	0.005	NE	NE	NE		NE	NE	NE	NA	NE
Acodor 1284 0.00% NA	Aroclor 1242	0.00%	NA	Average	0.005	NE	NE	NE	NE	NE	NE	NE	NA	NE
Acobor 1220	Aroclor 1248	0.00%	NA	Average	0.005	NE	NE	NE	NE	NE	NE	NE	NA	NE
Total PCBs 0.00%	Aroclor 1254	0.00%	NA	Average	0.005	NE	NE	NE	NE	NE	NE	NE	NA	NE
Total PCBs 0.00%	Aroclor 1260	0.00%	NA	Average	0.005	NE	NE	NE	NE	NE	NE	NE	NA	NE
Aldrin	Total PCBs	0.00%			0.035	NE	NE	0.22	40	NE	NE	0.371		No
Aldrin						•	•							
Alpha-bhc 0.00%		0.00%	NA	Average	0.00125	NE	NE	0.029	NE	NE	NE	NE	NA	NE
Beta-BHC 0.00%	Alpha-bhc	0.00%	NA	Average	0.0025	NE	NE	NE	NE	NE	NE	NE	NA	NE
Chlordane 0.00%														
DDD.4.4	Chlordane	0.00%	NA			NE	NE	NE	NE	NE	NE	NE	NA	NE
DDE_4.4-	DDD.4.4-	0.00%	NA	-	0.01875	NE	NE	NE	NE	NE	NE	NE	NA	NE
DDT_4.4-			NA	•		NE	NE	NE	NE	NE	NE	NE	NA	NE
Deltain Hold Deltain Deltain Hold Deltain Hold Deltain Del	DDT.4.4-	0.00%	NA	•	0.01875	NE	NE	0.03	NE	NE	NE	NE	NA	NE
Deledrin 0.00% NA	, ,													
Endosulfan 0.00%				•										
Endosulfan II				•										
Endosulfan sulfate 0.00% NA				_										
Endrin aldehyde				•										
Endrin aldehyde 0.00% NA Average 0.01875 NE NE NE NE NE NE NE N				-										
Gamma-BHĆ 0.00% NA Average 0.0125 NE NA NA NE NA NE NA NE NA NE NE </td <td></td> <td></td> <td></td> <td>_</td> <td></td>				_										
Heptachlor 0.00%				•										
Helptachlor epoxide				•					—		—			
Methoxychlor 0.00% NA Average 0.01875 NE NE NE 0.3 NE NE <th< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				_										
Mirex 0.00% NA Average 0.0125 NE NE NE 0.27 NE NE NE NE NA NE NB NB NA NB NA NB NA NB NA NB NB <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>														
Toxaphene 0.00% NA Average 0.025 NE NE 0.44 NE NE NE NE NA NE Metals (mg/Kg)				_										
Metals (mg/Kg) Antimony 6.67% NA Maximum 3.1 <1 12.5 31 5 78 NE 0.27 No Yes Arsenic 100.00% Nommal Students t UCL 7.03 <1-65														
Antimony 6.67% NA Maximum 3.1 <1 12.5 31 5 78 NE 0.27 No Yes Arsenic 100.00% Normal Students t UCL 7.03 <1-65		0.0070	14/1	rtverage	0.020		111	0.11		112	112		1473	
Arsenic 100.00% Normal Students t UCL 7.03 <1-65 12.7 0.39 9.9 60 43 9.9 No No <td></td> <td>6.67%</td> <td>NΑ</td> <td>Maximum</td> <td>3.1</td> <td>-1</td> <td>12.5</td> <td>31</td> <td>5</td> <td>78</td> <td>NF</td> <td>0.27</td> <td>No</td> <td>Yes</td>		6.67%	NΑ	Maximum	3.1	-1	12.5	31	5	78	NF	0.27	No	Yes
Beryllium										-			-	
Cadmium 6.67% NA Maximum 4.9 <150 2.3 39 4 20 0.77 0.36 Yes Yes Yes Chromium 100.00% Normal Students t UCL 80.67 30-700 49.4 210 1 0.4 26 34 Yes Yes Copper 100.00% Normal Students t UCL 41.42 50-700 53.3 3100 70 50 28 49 No Yes Iron 100.00% Normal Students t UCL 28349.00 3-10% 36100 23000 NE													-	
Chromium 100.00% Normal Students t UCL 80.67 30-700 49.4 210 1 0.4 26 34 Yes Yes Copper 100.00% Normal Students t UCL 41.42 50-700 53.3 3100 70 50 28 49 No Yes Iron 100.00% Normal Students t UCL 28349.00 3-10% 36100 23000 NE NE NE NE No Yes Yes Yes Yes 49.4 210 1 0.4 26 34 Yes Yes Yes Yes 49.0 No No No No Yes Yes				•		-			-	-			-	
Copper 100.00% Normal Info Students t UCL Students t UCL Students t UCL 28349.00 53.3 36100 70 50 28 49 No Yes Iron 100.00% Normal Normal Students t UCL Students t UCL 28349.00 3-10% 36100 23000 NE NE NE NE NE NE NO NO NO NO NO NO NO NO NO NO NO NO NO									-					
Iron												-		
Manganese 100.00% Lognormal 95% Approx Gamma UCL 531.60 200-7000 823 1800 220 450 4300 4000 No Yes Mercury 6.67% Maximum 0.41 0.051-5.1 0.5 23 0.3 0.1 0.00051 NE No Yes Nickel 100.00% Normal Students t UCL 80 30-700 41.5 1600 30 200 210 130 Yes Yes Selenium 0.00% NA Average 0.25 NE 11 390 0.52 4.1 1.2 0.21 No Yes Silver 0.00% NA Average 0.25 NE 2.1 390 2 NE 4.2 14 No No Thallium 0.00% NA Average 0.25 NE 25 5.2 1 NE NE NE No No Zinc 100.00% Normal									-			-	-	
Mercury 6.67% Maximum 0.41 0.051-5.1 0.5 23 0.3 0.1 0.00051 NE No Yes Nickel 100.00% Normal Students t UCL 80 30-700 41.5 1600 30 200 210 130 Yes Yes Yes Selenium 0.00% NA Average 0.25 NE 11 390 0.52 4.1 1.2 0.21 No Yes Silver 0.00% NA Average 0.25 NE 2.1 390 2 NE 4.2 14 No No Thallium 0.00% NA Average 0.25 NE 25 5.2 1 NE NE NE NE No No Yes Zinc 100.00% Normal Students t UCL 52 74-510 104 23000 50 120 8.5 79 No Yes													-	
Nickel 100.00% Normal Students t UCL 80 30-700 41.5 1600 30 200 210 130 Yes Yes Selenium 0.00% NA Average 0.25 NE 11 390 0.52 4.1 1.2 0.21 No Yes Silver 0.00% NA Average 0.25 NE 2.1 390 2 NE 4.2 14 No No Thallium 0.00% NA Average 0.25 NE 25 5.2 1 NE NE NE NE NE Ne No No Yes Zinc 100.00% Normal Students t UCL 52 74-510 104 23000 50 120 8.5 79 No Yes	•		Lognonnal	'''					_				-	
Selenium 0.00% NA Average 0.25 NE 11 390 0.52 4.1 1.2 0.21 No Yes Silver 0.00% NA Average 0.25 NE 2.1 390 2 NE 4.2 14 No No Thallium 0.00% NA Average 0.25 NE 25 5.2 1 NE NE NE No No Zinc 100.00% Normal Students t UCL 52 74-510 104 23000 50 120 8.5 79 No Yes			Normal							-			-	
Silver 0.00% NA Average 0.25 NE 2.1 390 2 NE 4.2 14 No No No Thallium 0.00% NA Average 0.25 NE 25 5.2 1 NE NE NE No No Zinc 100.00% Normal Students t UCL 52 74-510 104 23000 50 120 8.5 79 No Yes							-							
Thallium 0.00% NA Average 0.25 NE 25 5.2 1 NE NE NE No No No Zinc 100.00% Normal Students t UCL 52 74-510 104 23000 50 120 8.5 79 No Yes													-	
Zinc 100.00% Normal Students t UCL 52 74-510 104 23000 50 120 8.5 79 No Yes				_									-	
			INUITIAI	Students t UCL	IJΖ	74-310	104	23000	50	120	0.0	19	INU	162
Total Cyanide (mg/Kg) Cyanide, Total 0.00% NA Average 0.125 NE 0.7 1200 NE NE NE NO NE			NΙΛ	Avorago	0.125	NE	0.7	1200	NE	NE	NE	NE	No	NE

NA = Not Applicable. Analyte not detected in any sample.

NE = No criteria established.

EPC = lower of maximum detected value and UCL95

If all nondetect, 1/2 RL used as the EPC

UCL95 not calculated unless detection frequency was greater than 85%

ATTACHMENT A ANALYTICAL DATA REPORTS

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

GEI Consultants 10860 Gold Center Dr. Ste. 350 Rancho Cordova, CA 95670

Attn: Andrew Adinolfi Phone: (916) 631-4500

Fax:

Date Received: 09/26/07

Job#: 050115/TRLIA

Metals by ICPMS EPA Method SW6020/SW6020A

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID:	TP-ENV-ELLA-509					
Lab ID:	GEI07092653-01A	Beryllium (Be)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Chromium (Cr)	75	1.0 mg/Kg	09/25/07	10/03/07
		Manganese (Mn)	460	1.0 mg/Kg	09/25/07	10/03/07
		Iron (Fe)	36,000	500 mg/Kg	09/25/07	10/03/07
		Nickel (Ni)	54	2.0 mg/Kg	09/25/07	10/03/07
		Copper (Cu)	41	2.0 mg/Kg	09/25/07	10/03/07
		Zinc (Zn)	54	20 mg/Kg	09/25/07	10/03/07
		Arsenic (As)	12	1.0 mg/Kg	09/25/07	10/03/07
		Selenium (Se)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Silver (Ag)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Cadmium (Cd)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Antimony (Sb)	3.1	1.0 mg/Kg	09/25/07	10/03/07
		Mercury (Hg)	ND	0.20 mg/Kg	09/25/07	10/03/07
		Thallium (Tl)	ND	1.0 mg/Kg	09/25/07	10/03/07
Client ID:	TP-ENV-ELLA-505					
Lab ID:	GEI07092653-02A	Beryllium (Be)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Chromium (Cr)	80	1.0 mg/Kg	09/25/07	10/03/07
		Manganese (Mn)	650	1.0 mg/Kg	09/25/07	10/03/07
		Iron (Fe)	32,000	500 mg/Kg	09/25/07	10/03/07
		Nickel (Ni)	66	2.0 mg/Kg	09/25/07	10/03/07
		Copper (Cu)	37	2.0 mg/Kg	09/25/07	10/03/07
		Zinc (Zn)	55	20 mg/Kg	09/25/07	10/03/07
		Arsenic (As)	8.7	1.0 mg/Kg	09/25/07	10/03/07
		Selenium (Se)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Silver (Ag)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Cadmium (Cd)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Antimony (Sb)	ND	1.0 mg/Kg	09/25/07	10/03/07
		Mercury (Hg)	ND	0.20 mg/Kg	09/25/07	10/03/07
		Thallium (Tl)	ND	1.0 mg/Kg	09/25/07	10/03/07

This replaces the report originally signed 10/10/07, due to a change in the analyte list, per client request.

ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

12/12/07

Report Date

_

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 12-Dec-07	(QC Suı	mmary	Repor	t				Work Orde 07092653	
Method Blank File ID: 100207A.B\C004_ICB.		Туре МВ		est Code: EF atch ID: 184 4		hod SW60	Analysis I		10/03/2007 12:19	
Sample ID: MB-18442	Units : mg/l	∢g R		P/MS_07100			Prep Date		10/03/2007	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RP	DRefVa	al %RPD(Limit)	Qual
Beryllium (Be)	ND	1								
Chromium (Cr)	ND	1								
Manganese (Mn)	ND	1								
Iron (Fe)	ND	500								
Nickel (Ni) Copper (Cu)	ND ND	2 2								
Zinc (Zn)	ND ND	20								
Arsenic (As)	ND	1								
Selenium (Se)	ND	1								
Silver (Ag)	ND	1								
Cadmium (Cd)	ND	1								
Antimony (Sb)	ND	1								
Mercury (Hg)	ND	0.2								
Thallium (TI)	ND	1								
Laboratory Control Spike		Type LC	S Te	est Code: EF	A Met	hod SW60	20			
File ID: 100207A.B\C005_LCS.			Ba	atch ID: 1844	12		Analysis	Date:	10/03/2007 12:24	
Sample ID: LCS-18442	Units : mg/l	Kg R	Run ID: IC	P/MS_0710	03B		Prep Date	e: 1	10/03/2007	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RP	DRefVa	al %RPD(Limit)	Qua
Beryllium (Be)	31.6	1	25		127	77	124			L51
Chromium (Cr)	27.7	1	25		111	75	120			
Manganese (Mn)	256	1	250		102	79	121			
Iron (Fe)	5280	500	5000		106	80	120			
Nickel (Ni)	27.3	2	25		109	80	124			
Copper (Cu)	25	2	25		99.8	80	125			
Zinc (Zn)	27.9	20	25		111	73	135			
Arsenic (As)	26.8	1	25		107 107	80 80	120 120			
Selenium (Se) Silver (Ag)	26.8 25.8	1	25 25		107	62	132			
Cadmium (Cd)	27.6	1	25		110	80	120			
Antimony (Sb)	15.4	1	25		62	53	124			
Mercury (Hg)	0.553	0.2	0.5		111	68	140			
Thallium (TI)	27.3	1	25		109	73	120			
Sample Matrix Spike		Type MS	T (est Code: El	PA Met	hod SW60	20			
File ID: 100207A.B\C0MSL.D\		71		atch ID: 184				Date:	10/03/2007 12:39	
Sample ID: 07092653-01AMS	Units : mg/	Ka F		P/MS 0710			Prep Dat		10/03/2007	
Analyte	Result	PQL				LCL(ME)	UCL(ME) RP	DRefV	al %RPD(Limit)	Qua
Beryllium (Be)	30.9		25	0		75	132			
Chromium (Cr)	110	1 1	25	75.31	137	50	150			
Manganese (Mn)	818	i 1	250	463.2	142	50	146			
Iron (Fe)	43500	500	5000	35830	152	50	150			М3
Nickel (Ni)	80.7	2	25	53.61	108	50	149			
Copper (Cu)	66	2	25	41.04	99.8	54	143			
Zinc (Zn)	77.7	20	25	53.95	95	50	147			
Arsenic (As)	35.8	1	25	11.99		60	130			
Selenium (Se)	24.9	1	25	0	99.7	69 60	130			
Silver (Ag)	25.3	1	25	0	101	62 70	132 130			
Cadmium (Cd) Antimony (Sb)	26.5 18.6	1 1	25 25	0 3.148	106 62	70 50	130			
Mercury (Hg)	0.545	0.2	25 0.5	3.146 0		65	150			
Thallium (TI)	26.6	1	25	0		70	130			
	20.0	•	_0	ŭ			•			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Work Order: Date: **OC Summary Report** 07092653 12-Dec-07 Type MSD Test Code: EPA Method SW6020 Sample Matrix Spike Duplicate Analysis Date: 10/03/2007 12:57 File ID: 100207A.B\001MSD.D\ Batch ID: 18442 Run ID: ICP/MS_071003B Prep Date: 10/03/2007 Sample ID: 07092653-01AMSD Units: mg/Kg SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual PQL Analyte Result 30.85 8.8(20) M1 Beryllium (Be) 25 135 75 132 33.7 109.6 11.7(20) М1 192 50 150 Chromium (Cr) 123 1 25 75.31 M1 R58 45.4(20) Manganese (Mn) 1300 1 250 463.2 334 50 146 818 М3 Iron (Fe) 47400 500 5000 35830 231 50 150 43450 8.6(20) 80.7 21.2(20) M1 R58 2 53.61 185 50 149 Nickel (Ni) 99.9 25 65.98 17.7(20) M1 Copper (Cu) 78.8 2 25 41.04 151 54 143 8.9(20) Zinc (Zn) 84.9 20 25 53.95 124 50 147 77.65 7.1(20) 35.84 130 25 106 60 Arsenic (As) 38.5 1 11.99 Selenium (Se) 25 0 109 69 130 24.92 8.7(20) 27.2 1 25.34 7.4(20) 132 Silver (Ag) 27.3 25 0 109 62 1 Cadmium (Cd) 25 115 70 130 26.47 8.2(20) 28.7 n 1 2.0(20) 25 63 50 130 18.59 Antimony (Sb) 19 1 3.148 65 150 0.5446 6.3(20)116 Mercury (Hg) 0.58 0.2 0.5 0 130 26.55 7.7(20) Thallium (TI) 25 0 115 28.7

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

- L51 = Analyte recovery was above acceptance limits for the LCS, but was acceptable in the MS/MSD.
- M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to the spike level. The method control sample recovery was acceptable.
- R58 = MS/MSD RPD exceeded the laboratory control limit.

3249 Fitzgerald Road Rancho Cordova, CA 95742

December 10, 2007

CLS Work Order #: CQI0859 COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: GEI07092653

Enclosed are the results of analyses for samples received by the laboratory on 09/26/07 16:10. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

12/10/07 12:15 Page 2 of 10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks, NV 89431

Project: GEI07092653 Project Number: GEI07092653

COC #:

CLS Work Order #: CQI0859

Project Manager: Reyna Vallejo

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07092653-01A (TP-ENV-ELLA-	509) (CQ10859-01) Soil	Samp	oled: 09/2	5/07 09:00	Received	d: 09/26/07	16:10		
Cyanide (total)	ND	0.50	mg/kg	1	CQ08181	10/02/07	10/02/07	EPA 9010B	
GEI07092653-02A (TP-ENV-ELLA-	505) (CQ10859-02) Soil	Samp	oled: 09/2	5/07 15:45	Receive	d: 09/26/07	16:10		
Cvanide (total)	ND	0.50	mg/kg	1	CO08181	10/02/07	10/02/07	EPA 9010B	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 3 of 10 12/10/07 12:15

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks, NV 89431

Project: GEI07092653
Project Number: GEI07092653

CLS Work Order #: CQI0859

COC #:

Project Manager: Reyna Vallejo

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	oorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GE107092653-01A (TP-ENV-ELLA-50	99) (CQ10859-01) Soil	Samp	led: 09/2	5/07 09:00	Received	d: 09/26/07	16:10		
Aldrin	ND	1.0	μg/kg	1	CQ08077	09/27/07	09/27/07	EPA 8081A	
alpha-BHC	ND	8.0	"	"	**	**	"	**	
beta-BHC	ND	10	"	"	"	"	"	"	
delta-BHC	ND	10	"	"	"	"	"	"	
gamma-BHC (Lindane)	ND	10	"	"	"	**	"	11	
Chlordane	ND	20	"	"	"	"	"	11	
4,4´-DDD	ND	15	"	"	"	"	"	11	
4,4´-DDE	ND	15	"	**	**	"	n	"	
4,4´-DDT	ND	15	"	"	"	**	"	"	
Dieldrin	ND	1.0	"	11	**	"	**	"	
Endosulfan I	ND	15	"	**	"	n	**	"	
Endosulfan II	ND	15	"	"	"	n	**	"	
Endosulfan sulfate	ND	15	"		11	n	**	**	
Endrin	ND	15	"	"	11	"	**	**	
Endrin aldehyde	ND	15	"	11	. 11	"	**	**	
Heptachlor	ND	10	"	n	11	"	**	**	
Heptachlor epoxide	ND	4.0	11	11	"	"	**	**	
Methoxychlor	ND	15	"	**	11	"	"	**	
Mirex	ND	10	**	**	"	**	"	**	
Toxaphene	ND	20				"		11	
Surrogate: Tetrachloro-meta-xylene		107 %	46-	139	"	"	"	"	
Surrogate: Decachlorobiphenyl		117%	52-		"	"	"	"	
GE107092653-02A (TP-ENV-ELLA-50	05) (CQ10859-02) Soil	Samp	oled: 09/2	5/07 15:45	Receive	d: 09/26/07	16:10		
Aldrin	ND	1.0	μg/kg	1	CQ08077	09/27/07	09/27/07	EPA 8081A	
alpha-BHC	ND	8.0	"	"	"	**	"	**	
beta-BHC	ND	10	"	"	"	"	"	"	
delta-BHC	ND	10	"	. 11	"	"	"	"	
gamma-BHC (Lindane)	ND	10	"	"	"	"	n	"	
Chlordane	ND	20	"	"	"	"	"	"	
4,4'-DDD	ND	15	"	"	"	"	"	n	
4,4'-DDE	ND	15	**	"	**	"	"	u u	
4,4'-DDT	ND	15	**	**	**	"	"	"	
Dieldrin	ND	1.0	"	"	**	11	"	**	

Page 4 of 10

12/10/07 12:15

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project: GEI07092653

Project Number: GEI07092653

Project Manager: Reyna Vallejo

CLS Work Order #: CQ10859

COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte '	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GE107092653-02A (TP-ENV-ELLA-50	5) (CQ10859-02) Soil	Samp	oled: 09/25/	07 15:45	Received	1: 09/26/07	16:10		
Endosulfan I	ND	15	μg/kg	1	CQ08077	09/27/07	09/27/07	EPA 8081A	
Endosulfan II	ND	15	11	"	"	**	"	"	
Endosulfan sulfate	ND	15	11	"	"	"	"	"	
Endrin	ND	15	"	"	"	"	"	"	
Endrin aldehyde	ND	15	11	"	н	11	"	"	
Heptachlor	ND	10	n .	"	"	"	"		
Heptachlor epoxide	ND	4.0	"	**	"	11	Ħ	11	
Methoxychlor	ND	15	H	**	**	11	**	"	
Mirex	ND	10	n	**	"	11	"	"	
Toxaphene	ND	20				# 1	"	#	
Surrogate: Tetrachloro-meta-xylene		102 %	46-13	19	"	"	"	"	
Surrogate: Decachlorobiphenyl	9	93.5 %	52-14	!1	"	"	"	"	

Page 5 of 10

12/10/07 12:15

Alpha Analytical, Inc.-Sparks

255 Glendale Ave.; Suite 21 Sparks, NV 89431 Project: GEI07092653
Project Number: GEI07092653

CLS Work Order #: CQI0859

Project Manager: Reyna Vallejo

COC #:

Polychlorinated Biphenyls by EPA Method 8082A

	•	oorting				-			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GE107092653-01A (TP-ENV-ELLA-5	509) (CQ10859-01) Soil	Samp	led: 09/2	25/07 09:00	Received	d: 09/26/07	16:10		
Aroclor 1016	ND	20	μg/kg	1	CQ08078	09/27/07	09/28/07	EPA 8082A	
Aroclor 1221	ND	20	**	"	"	"	**	"	
Aroclor 1232	ND	20	**	n	"	"	"	"	
Aroclor 1242	ND	20	11	"	"	**	**	"	
Aroclor 1248	ND	20	11	"	"	"	"	"	
Aroclor 1254	ND	20	"	"	**	"	"	"	
Aroclor 1260	ND	20	"		"	"		11	
Surrogate: Decachlorobiphenyl		143 %	50-	.150	"	"	"	"	
GE107092653-02A (TP-ENV-ELLA-5	505) (CQI0859-02) Soil	Samp	oled: 09/2	25/07 15:45	Receive	d: 09/26/07	16:10		
Aroclor 1016	ND	20	μg/kg	1	CQ08078	09/27/07	09/28/07	EPA 8082A	
Aroclor 1221	ND	20	"	"	"	11	"	n	
Aroclor 1232	ND	20	"	"	**	n	"	n	
Aroclor 1242	ND	20	**	**	"	"	**	"	
Aroclor 1248	ND	20	"	11	**	"	**	"	
Aroclor 1254	ND	20	"	"	11	"	**	"	
Aroclor 1260	ND	20	"		"	"	***	11	AND THE PERSON NAMED IN COLUMN TWO
Surrogate: Decachlorobiphenyl		139 %	50-	.150	"	"	"	"	

Page 6 of 10

12/10/07 12:15

Alpha Analytical, Inc.-Sparks

Project: GEI07092653

255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Number: GEI07092653 Project Manager: Reyna Vallejo CLS Work Order #: CQ10859

COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ08181 - General Preparation										
Blank (CQ08181-BLK1)				Prepared	& Analyze	ed: 10/02/	07			
Cyanide (total)	ND	0.50	mg/kg	the second side side		0.0 M. J. J. W. T. T. T. T. T. T. T. T. T. T. T. T. T.				
LCS (CQ08181-BS1)				Prepared	& Analyze	ed: 10/02/	07			
Cyanide (total)	5.06	0.50	mg/kg	5.00		101	75-125			
LCS Dup (CQ08181-BSD1)				Prepared	& Analyze	ed: 10/02/	07			
Cyanide (total)	4.92	0.50	mg/kg	5.00		98.4	75-125	2.90	25	

Page 7 of 10 12/10/07 12:15

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07092653 Project Number: GEI07092653

COC #:

CLS Work Order #: CQI0859

Sparks, NV 89431 Project Manager: Reyna Vallejo

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ08077 - LUFT-DHS GCNV	7									
Blank (CQ08077-BLK1)				Prepared	& Analyze	ed: 09/27/0	07			
Aldrin	ND	1.0	μg/kg	The second secon						
llpha-BHC	ND	8.0	"							
octa-BHC	ND	10	"							
lelta-BHC	ND	10	"							
gamma-BHC (Lindane)	ND	10	"							
Chlordane	ND	20	n							
l,4′-DDD	ND	15	n							
I,4′-DDE	ND	15	11							
l,4′-DDT	ND	15	"							
Dieldrin	ND	1.0	"							
Endosulfan I	ND	15	n							
Endosulfan II	ND	15	n .							
Endosulfan sulfate	ND	15	**							
Endrin	ND	15	"							
Endrin aldehyde	ND	15	"							
Heptachlor	ND	10	"							
leptachlor epoxide	ND	4.0	"							
Methoxychlor	ND	15	"							
Mirex	ND	10	"							
Toxaphene	ND	20	"							
Surrogate: Tetrachloro-meta-xylene	7.85		"	8.33	The second secon	94.2	46-139			
Surrogate: Decachlorobiphenyl	7.90		"	8.33		94.8	52-141			
LCS (CQ08077-BS1)				Prepared	& Analyz	ed: 09/27/	07			
Aldrin	18.5	1.0	μg/kg	16.7		111	47-132			
gamma-BHC (Lindane)	18.3	10	**	16.7		110	56-133			
1,4´-DDT	13.0	15	"	16.7		77.9	46-137			
Dieldrin	15.7	1.0	**	16.7		94.1	44-143			
Endrin	14.5	15	**	16.7		87.3	30-147			
Heptachlor	16.9	10	"	16.7		101	33-148			
Surrogate: Tetrachloro-meta-xylene	9.83		"	8.33		118	46-139			

Page 8 of 10

Sparks, NV 89431

12/10/07 12:15

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Project: GEI07092653 Project Number: GEI07092653

Project Number: GE107092653
Project Manager: Reyna Vallejo

CLS Work Order #: CQI0859

COC #:

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ08077 - LUFT-DHS GCNV										
LCS (CQ08077-BS1)				Prepared	& Analyze	ed: 09/27/	07			
Surrogate: Decachlorobiphenyl	9.47		μg/kg	8.33		114	52-141		- brailer or or or or or or or or or or or or or	
LCS Dup (CQ08077-BSD1)				Prepared	& Analyzo	ed: 09/27/	07			
Aldrin	14.7	1.0	μg/kg	16.7		88.5	47-132	22.6	30	
gamma-BHC (Lindane)	14.3	10	"	16.7		85.6	56-133	24.7	30	
4,4'-DDT	11.1	15	"	16.7		66.7	46-137	15.6	30	
Dieldrin	13.1	1.0	"	16.7		78.8	44-143	17.7	30	
Endrin	12.3	15	"	16.7		74.0	30-147	16.5	30	
Heptachlor	13.6	10	"	16.7		81.6	33-148	21.7	30	
Surrogate: Tetrachloro-meta-xylene	7.73		"	8.33		92.8	46-139			
Surrogate: Decachlorobiphenyl	8.40		"	8.33		101	52-141			
Matrix Spike (CQ08077-MS1)	Sor	urce: CQI08	59-01	Prepared	& Analyz	ed: 09/27/	07			
Aldrin	14.6	1.0	μg/kg	16.7	ND	87.3	47-138			
gamma-BHC (Lindane)	14.6	10	"	16.7	ND	87.5	38-144			
4,4´-DDT	12.3	15	"	16.7	ND	73.8	41-157			
Dieldrin	13.5	1.0	"	16.7	ND	80.9	46-155			
Endrin	13.2	15	**	16.7	ND	79.4	34-149			
Heptachlor	13.7	10	11	16.7	ND	82.3	36-155			
Surrogate: Tetrachloro-meta-xylene	18.6		"	20.8	constant of Market Springers and Constant Springers	89.3	46-139			
Surrogate: Decachlorobiphenyl	20.5		"	20.8		98.2	52-141			
Matrix Spike Dup (CQ08077-MSD1)	So	urce: CQI08	59-01	Prepared	& Analyz	ed: 09/27/	07	., .,		
Aldrin	13.2	1.0	μg/kg	16.7	ND	79.3	47-138	9.67	35	
gamma-BHC (Lindane)	12.7	10	"	16.7	ND	76.0	38-144	14.0	35	
4,4′-DDT	12.6	15	"	16.7	ND	75.4	41-157	2.22	35	
Dieldrin	12.9	1.0	"	16.7	ND	77.5	46-155	4.25	35	
Endrin	12.9	15	"	16.7	ND	77.6	34-149	2.29	35	
Heptachlor	13.3	10	"	16.7	ND	80.1	36-155	2.74	35	
Surrogate: Tetrachloro-meta-xylene	15.7	annesse a committe a service and distribution on the Wile a service	"	20.8		75.5	46-139			
Surrogate: Decachlorobiphenyl	19.9		"	20.8		95.6	52-141			

Page 9 of 10 12/10/07 12:15

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks, NV 89431

Project: GEI07092653
Project Number: GEI07092653

CLS Work Order #: CQ10859

Project Manager: Reyna Vallejo COC #:

Polychlorinated Biphenyls by EPA Method 8082A - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CQ08078 - LUFT-DHS GCNV										
Blank (CQ08078-BLK1)				Prepared:	09/27/07	Analyzed	1: 09/28/07		18399	and the second
Aroclor 1016	ND	20	μg/kg							
Aroclor 1221	ND	20	"							
Aroclor 1232	ND	20	"							
Aroclor 1242	ND	20	**							
Aroclor 1248	ND	20	"							
Aroclor 1254	ND	20	"							
Aroclor 1260	ND	20	**							
Surrogate: Decachlorobiphenyl	8.63		"	8.33		104	50-150	and the second second		
LCS (CQ08078-BS1)				Prepared:	: 09/27/07	Analyzed	1: 09/28/07			
Aroclor 1260	77.7	20	μg/kg	83.3	The second secon	93.3	29-131			
Surrogate: Decachlorobiphenyl	7.90		// // // // // // // // // // // // //	8.33		94.8	50-150			
LCS Dup (CQ08078-BSD1)				Prepared:	: 09/27/07	Analyzed	1: 09/28/07			
Aroclor 1260	75.6	20	μg/kg	83.3	1.10 Parage - 1.	90.7	29-131	2.79	30	
Surrogate: Decachlorobiphenyl	7.73		//	8.33		92.8	50-150		make00471	
Matrix Spike (CQ08078-MS1)	So	urce: CQ108	59-02	Prepared	: 09/27/07	Analyzed	1: 09/28/07			
Aroclor 1260	63.1	20	μg/kg	83.3	ND	75.8	29-131			
Surrogate: Decachlorobiphenyl	6.33		"	8.33		76.0	50-150			180 g
Matrix Spike Dup (CQ08078-MSD1)	So	urce: CQ108	59-02	Prepared	: 09/27/07	Analyzed	1: 09/28/07	Calculate Supplemental Suppleme		
Aroclor 1260	64.0	20	μg/kg	83.3	ND	76.8	29-131	1.43	30	
Surrogate: Decachlorobiphenyl	6.43		"	8.33		77.2	50-150		Andrew VI Myster	

CA DOHS ELAP Accreditation/Registration Number 1233

Page 10 of 10 12/10/07 12:15

Alpha Analytical, Inc.-Sparks Project: GEI07092653

255 Glendale Ave.; Suite 21 Project Number: GEI07092653 CLS Work Order #: CQ10859

Sparks, NV 89431 Project Manager: Reyna Vallejo COC #:

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CA DOHS ELAP Accreditation/Registration Number 1233

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

Report Attention

TEL: (775) 355-1044 FAX: (775) 355-0406

CA A INFAIDED #2 WorkOrder: GEIC07092653

Report Due By: 5:00 PM On: 11-Oct-07

aadinolfi@geiconsultants.com (916) 631-4500 x Phone Number

Andrew Adinolfi

EDD Required: Yes

Sampled by: Client

Date Printed 11-Dec-07

Samples Received 26-Sep-07 Cooler Temp

Rancho Cordova, CA 95670

10860 Gold Center Dr. Ste. 350

GEI Consultants

Client:

050115/TRLIA

.: qof

= Final Rpt Only QC Level: 1

Client's COC #: 20777

Ap

										Requested Tests		
Alpha	Client		Collection No. of Bo	No. of	Bottles		8081_S	8082_S	CYANIDE_T	8081_S 8082_S CYANIDE_T METALS_S		
Sample ID	Sample ID	Matr	Matrix Date	Alpha	Sub TAT	TAT			OTAL	0		Sample Remarks
GE107092653-01A	3E107092653-01A TP-ENV-ELLA-509	SO	SO 09/25/07 09:00	-	_	10	PEST	PCB	Cyanide	Cyanide Spec. list	° €	8081, 8082 and Total Cyanide subbed to CLS.
GE107092653-02A	3EI07092653-02A TP-ENV-ELLA-505	SO	SO 09/25/07 15:45	-	-	1 10	PEST	PCB	Cyanide Spec. list	Spec. list	8 O	8081, 8082 and Total Cyanide subbed to CLS.

Samples prelogged in order for Sac office to sub 8081, 8082 and Total Cyanide to CLS. Security seals intact. Frozen ice. Amended 10/9/07 to add EDD, per Justin. TD. Amended 12/11/07 @ 14:40 to add Hg to Metals list, per Andrew. LE: Comments:

Print Name	icia Ednosa
	10/ -
Signature	oasily Con
(Sative
	ogged in by:

Alpha Analytical, Inc.

Company

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

EMail Address Phone Number Report Attention

Andrew Adinolfi

10860 Gold Center Dr. Ste. 350

GEI Consultants

Clent:

Rancho Cordova, CA 95670

WorkOrder: GEIC07092653

AMENDED 1017

Report Due By: 5:00 PM On: 11-Oct-07

EDD Required: Yes

aadinolfi@geiconsultants.com (916) 631-4500 x

Sampled by: Client

Date Printed

Samples Received 26-Sep-07

Cooler Temp

Client's COC #: 20777

QC Level: 1

09-Oct-07 050115/TRLIA .. વું Final Rpt Only

8081, 8082 and Total Cyanide subbed to CLS. 8081, 8082 and Total Cyanide subbed to CLS. Sample Remarks Requested Tests CYANIDE_T METALS_S OTAL O Spec. list Spec. list Cyanide Cyanide 8082_S PCB PCB 8081_S PEST PEST Alpha Sub TAT 9 9 Collection No. of Bottles 09/25/07 09:00 09/25/07 15:45 Matrix Date တ္တ S TP-ENV-ELLA-509 TP-ENV-ELLA-505 Sample ID GEI07092653-01A GE107092653-02A Sample ID

prelogged in order for Sac office to sub 8081, 8082 and Total Cyanide to CLS. Security seals intact. Frozen ice. Amended 10/9/07 to add EDD, per Justin. TD: Comments:

Alpha Analytical, Inc. Company Logged in by:

Date/Time

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) Page: 1 of 1 WorkOrder: GEIC07092653 Samples Received 26-Sep-07 Sampled by: Client EDD Required: No Cooler Temp S CHAIN-OF-CUSTODY RECORD 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 Client's COC #: 20777 TEL: (775) 355-1044 FAX: (775) 355-0406 Alpha Analytical, Inc. EMail aadinolfi@geiconsultants.com Andrew Adinolfi Job: 050115/TRLIA (916) 631-4500 五二二 FAX: Report Attention: Andrew Adinolfi 10860 Gold Center Dr. Ste. 350 Rancho Cordova, CA 95670 GEI Consultants Billing Information: CC Report:

Date Printed 8081, 8082 and Total Cyanide subbed to CLS. 27-Sep-07 8081, 8082 and Total Cyanide subbed to CLS. Report Due By: 5:00 PM On: 11-Oct-07 Sample Remarks 4 °C Requested Tests CYANIDE_T METALS_S
OTAL 0 Spec. list Spec. list Cyanide Cyanide 8082_S PCB PCB 8081_S PEST PEST PWS# SUB TAT 9 9 Collection No. of Bottles 09/25/07 15:45 TP-ENV-ELLA- SO 09/25/07 509 Matrix Date TP-ENV-ELLA- SO 505 = Final Rpt Only Sample ID GE107092653-01A GE107092653-02A QC Level: 1 Sample ID

Samples prelogged in order for Sac office to sub 8081, 8082 and Total Cyanide to CLS. Security seals intact. Frozen ice.:

Comments:

	Signature	Print Name	Company	Date/Time
Logged in by:	Desper)	Alpha Analytical, Inc.	1101 - 60/15/16
			A STATE OF THE PARTY OF THE PAR	THE PARTY LANGE AND ADDRESS OF THE PARTY PARTY AND ADDRESS OF THE PARTY

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

			/. /. /
Billing Information:	Alpha Analytical Inc	Samples Collected From Which State?	///07
Name OEI (answitzerts	255 Glendale Avenue, Suite 21	AZ CA V WA	
Address JOSGO Gold Canter Dr. Str. 350	Sparks, Nevada 89431-5778		Page # of
City, State, Zip Ronch Dechara, CA 95670	Phone (775) 355-1044		
Phone Number 916 631 4560 Fax 916 651 4504	Conto-coo (Cara) year	/ Analyses Required /	

_	Required QC Level?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	EDD/EDF? YES NO		BEMABKS			3081 And	ANDE	+0 // S	t product				
	200	هم:							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	() C C +		1			
-	\$\$\frac{\tau_{1}^{2}}{-}	1 P	8		』 ア 一		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
	050115	3 3 3	-	Ė	TAT Filtered ** See below		25 188 1.2								
	# 40C	Address	Phone # Fax # Fax #	Report Attention	Sample Description	TP-ENV-ELLA-SCG	TP-ENV-ELLA-505								
			Phon	ampled by	Lab ID Number (Office Only)	(1621) 74821653-01	70-								
	Client Name TRLIA		Zip	ate See Key	Sampled Sampled Selow	900 9/25 SC	1545 9125 SC								
	Client Nam	Address	City, State, Zip	Time	Sampled San	900	6459								

ADDITIONAL INSTRUCTIONS:

* Sb, AS, Be, Cd, CV,	Cu, Fe, Mn, N; Se, Ag,	Se A TI ZO (By WHO)		
Signature	Print Name	Company	Date	Time
Relinquished by	Jastin Crose	(JE) (SOSTA 120+5	9/25/07	\ <u>C</u>
Received by	1 iso cle 5,110	ALOHA	4 75.29	1030
Relinquished by	}			000
Received by M.O. () 20 MM Agen	1926 Jilyan	0000	415-96	1101
RelinqVished by				2
Received by				
*Key: AQ - Aqueous SO - Soil WA - Waste	OT - Other AR - Air **: L-Liter	V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass	ass P-Plastic OT-Other	OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis OT-Other P-Plastic **B-Brass** of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report. T-Tedlar 0-Orbo S-Soil Jar V-Voa **: L-Liter AR - Air

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

GEI Consultants 10860 Gold Center Dr. Ste. 350 Rancho Cordova, CA 95670 Attn: Andrew Adinolfi Phone: (916) 631-4500

Fax:

Date Received: 11/02/07

Job#: 050115/TRLIA

Metals by ICPMS EPA Method SW6020/SW6020A

		Parameter	Concentration	Reporting	Date Date	
				Limit	Sampled Analyze	ed
Client ID:	TP-ENV-NAUMES-31	17				
Lab ID:	GEI07110210-01A	Beryllium (Be)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Chromium (Cr)	72	1.0 mg/Kg	11/02/07 11/09/07	
		Manganese (Mn)	440	1.0 mg/Kg	11/02/07 11/09/07	
		Iron (Fe)	24,000	500 mg/Kg	11/02/07 11/09/07	
		Nickel (Ni)	77	2.0 mg/Kg	11/02/07 11/09/07	
		Copper (Cu)	40	2.0 mg/Kg	11/02/07 11/09/07	
		Zinc (Zn)	49	20 mg/Kg	11/02/07 11/09/07	
		Arsenic (As)	9.1	1.0 mg/Kg	11/02/07 11/09/07	
		Selenium (Se)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Silver (Ag)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Cadmium (Cd)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Antimony (Sb)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Mercury (Hg)	ND	0.20 mg/Kg	11/02/07 11/09/07	
		Thallium (Tl)	ND	1.0 mg/Kg	11/02/07 11/09/07	
Client ID:	TP-ENV-NAUMES-33	38				
Lab ID:	GEI07110210-02A	Beryllium (Be)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Chromium (Cr)	64	1.0 mg/Kg	11/02/07 11/09/07	
		Manganese (Mn)	410	1.0 mg/Kg	11/02/07 11/09/07	
		Iron (Fe)	24,000	500 mg/Kg	11/02/07 11/09/07	
		Nickel (Ni)	60	2.0 mg/Kg	11/02/07 11/09/07	
		Copper (Cu)	37	2.0 mg/Kg	11/02/07 11/09/07	
		Zinc (Zn)	47	20 mg/Kg	11/02/07 11/09/07	
		Arsenic (As)	9.4	1.0 mg/Kg	11/02/07 11/09/07	
		Selenium (Se)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Silver (Ag)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Cadmium (Cd)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Antimony (Sb)	ND	1.0 mg/Kg	11/02/07 11/09/07	
		Mercury (Hg)	0.25	0.20 mg/Kg	11/02/07 11/09/07	
		Thallium (Tl)	ND	1.0 mg/Kg	11/02/07 11/09/07	

050115/TRLIA

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	TP-ENV-NAUMES-391	1				
Lab ID :	GEI07110210-03A	Beryllium (Be)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Chromium (Cr)	130	1.0 mg/Kg	11/02/07	11/09/07
		Manganese (Mn)	540	1.0 mg/Kg	11/02/07	11/09/07
		Iron (Fe)	30,000	500 mg/Kg	11/02/07	11/09/07
		Nickel (Ni)	100	2.0 mg/Kg	11/02/07	11/09/07
		Copper (Cu)	40	2.0 mg/Kg	11/02/07	11/09/07
		Zinc (Zn)	56	20 mg/Kg	11/02/07	11/09/07
		Arsenic (As)	5.2	1.0 mg/Kg	11/02/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/02/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/02/07	11/09/07
Client ID:	TP-ENV-NAUMES-499)				
Lab ID :	GEI07110210-04A	Beryllium (Be)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Chromium (Cr)	77	1.0 mg/Kg	11/02/07	11/09/07
		Manganese (Mn)	610	1.0 mg/Kg	11/02/07	11/09/07
		Iron (Fe)	30,000	500 mg/Kg	11/02/07	11/09/07
		Nickel (Ni)	87	2.0 mg/Kg	11/02/07	11/09/07
		Copper (Cu)	43	2.0 mg/Kg	11/02/07	11/09/07
		Zinc (Zn)	53	20 mg/Kg	11/02/07	11/09/07
		Arsenic (As)	5.8	1.0 mg/Kg	11/02/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/02/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/02/07	11/09/07
Client ID:	TP-ENV-NAUMES-425	5				
Lab ID:	GEI07110210-05A	Beryllium (Be)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Chromium (Cr)	92	1.0 mg/Kg	11/02/07	11/09/07
		Manganese (Mn)	830	1.0 mg/Kg	11/02/07	11/09/07
		Iron (Fe)	29,000	500 mg/Kg	11/02/07	11/09/07
		Nickel (Ni)	100	2.0 mg/Kg	11/02/07	11/09/07
		Copper (Cu)	44	2.0 mg/Kg	11/02/07	11/09/07
		Zinc (Zn)	57	20 mg/Kg	11/02/07	11/09/07
		Arsenic (As)	5.8	1.0 mg/Kg	11/02/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/02/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/02/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/02/07	11/09/07

This replaces the report originally signed 11/16/07, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger & Scholl Kandy Saulner Dalter Arribner
Roger L. Scholl, Ph.D., Laboratory Director · Randy Gardner, Laboratory Manager · · Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

12/12/07
Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 12-Dec-07			QC Su	ımmar	y Repor	t			Work Orde 07110210	
Method Blank File ID: 110807.B	A028_ICB.D		Туре Мі		est Code: El		hod SW60		te: 11/08/2007 22:29	
Sample ID: MI	B-18687	Units : mg/l	Ka i	Run ID: IC	P/MS_0711	08A		Prep Date:	11/08/2007	
Analyte		Result	PQL				LCL(ME)	•	efVal %RPD(Limit)	Qual
Beryllium (Be)		ND	1			***************************************				
Chromium (Cr)		ND	1							
Manganese (Mn)		ND	1							
Iron (Fe)		ND	500							
Nickel (Ni)		ND	2							
Copper (Cu) Zinc (Zn)		ND ND	2 20							
Arsenic (As)		ND ND	20							
Selenium (Se)		ND	1							
Silver (Ag)		ND	1							
Cadmium (Cd)		ND	1							
Antimony (Sb)		ND	1							
Mercury (Hg)		ND	0.2							
Thallium (TI)		ND	1							
Laboratory Co			Type LC	CS Te	est Code: El	PA Met	hod SW60	20		
File ID: 110807.B \	A029_LCS.D			Ва	atch ID: 186	87		Analysis Dat	te: 11/08/2007 22:34	
Sample ID: LO	CS-18687	Units : mg/l	≺ g ∣	Run ID: IC	P/MS_0711	A80		Prep Date:	11/08/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
Beryllium (Be)		26.5	1	25		106	77	124		
Chromium (Cr)		25.4	1	25		101	75	120		
Manganese (Mn)		265	1	250		106	79	121		
Iron (Fe)		5320	500	5000		106	80	120		
Nickel (Ni) Copper (Cu)		26.9 27.1	2	25 25		107 108	80 80	124 125		
Zinc (Zn)		27.1	2 20	25 25		108	73	135		
Arsenic (As)		26.7	1	25		107	80	120		
Selenium (Se)		26.6	1	25		106	80	120		
Silver (Ag)		24.7	1	25		99	62	132		
Cadmium (Cd)		26.4	1	25		105	80	120		
Antimony (Sb)		18.6	1	25		74	53	124		
Mercury (Hg)		0.531	0.2	0.5		106	68	140		
Thallium (TI)		24.2	1	25		97	73	120		
Sample Matrix	•		Type M	-	est Code: El		hod SW60			
File ID: 110807.B \	\A03MS.D\			Ва	atch ID: 186	87		-	te: 11/08/2007 22:49	
·	7110729-01AMS	Units : mg/l			P/MS_0711			Prep Date:	11/08/2007	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual
Beryllium (Be)		26.7	1	25	0		75	132		
Chromium (Cr)		37.4	1	25	13	97	50	150		
Manganese (Mn) Iron (Fe)		593	1	250	296.1	119	50 50	146		
Nickel (Ni)		28500 33	500 2	5000 25	22340 8.494	123 98	50 50	150 149		
Copper (Cu)		71.1	2	25	44.58		54	143		
Zinc (Zn)		168	20	25	147.7	82	50	147		
Arsenic (As)		26.1	1	25	3.139	92	60	130		
Selenium (Se)		23.4	1	25	0		69	130		
Silver (Ag)		26.3	1	25	2.793		62	132		
Cadmium (Cd)		26	1	25	0	104	70	130		
Antimony (Sb)		20.6	1	25	1.893		50	130		
Mercury (Hg) Thallium (TI)		0.662 23.5	0.2	0.5 25	0.3038 0		65 70	150 130		
mamam (11)		۷۵.5	1	20	U	34	70	100		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: Work Order: QC Summary Report 12-Dec-07 07110210 Type MSD Test Code: EPA Method SW6020 Sample Matrix Spike Duplicate File ID: 110807.B\A03MSD.D\ Batch ID: 18687 Analysis Date: 11/08/2007 22:54 Sample ID: 07110729-01AMSD Units: mg/Kg Run ID: ICP/MS_071108A Prep Date: 11/08/2007 Analyte SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Result **PQL** Bervllium (Be) 25.6 25 102 75 132 26.69 4.3(20)Chromium (Cr) 35.9 25 13 92 50 150 37.37 4.0(20)Manganese (Mn) R5 465 250 296.1 67 50 146 593 24.2(20) 1 Iron (Fe) 26000 500 5000 22340 73 50 150 28470 9.0(20) Nickel (Ni) 8.494 50 149 32.98 4.3(20)31.6 2 25 92 Copper (Cu) 70.8 2 25 44.58 54 143 71.12 0.5(20)105 Zinc (Zn) 50 168.2 3.0(20) 173 20 25 147.7 102 147 Arsenic (As) 26.7 3.139 94 60 130 26.05 2.6(20) 25 Selenium (Se) 1.7(20) 23.8 25 95 69 130 23.38 Silver (Ag) 26.28 0.3(20) 62 26.2 25 2.793 94 132 Cadmium (Cd) 25.8 103 70 130 25.96 0.6(20)25 0 Antimony (Sb) 1.893 20.58 3.3(20) 21.3 25 77 50 130 Mercury (Hg) 0.2 0.708 0.5 0.3038 81 65 150 0.6617 6.8(20)Thallium (TI) 23.5 25 0 94 70 130 23.52 0.0(20)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

R5 = MS/MSD RPD exceed the laboratory control limit. Recovery met acceptance criteria.

3249 Fitzgerald Road Rancho Cordova, CA 95742

November 08, 2007

CLS Work Order #: CQK0080

COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: GEI07110210

Enclosed are the results of analyses for samples received by the laboratory on 11/02/07 15:30. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110210
Project Number: GEI07110210

CLS Work Order #: CQK0080
COC #:

Sparks NV, 89431

Project Manager: Reyna Vallejo

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07110210-01A (TP-Env-Naume	es-317) (CQK0080-0	1) Soil San	npled: 11	/02/07 08:	45 Receiv	/ed: 11/02/0	7 15:30		
Cyanide (total)	ND	0.50	mg/kg	1	CQ09156	11/06/07	11/06/07	EPA 9010B	
GEI07110210-02A (TP-Env-Naume	es-338) (CQK0080-0	2) Soil San	npled: 11	/02/07 09:	35 Receiv	ed: 11/02/0	7 15:30		
Cyanide (total)	ND	0.50	mg/kg	1	CQ09156	11/06/07	11/06/07	EPA 9010B	
GEI07110210-03A (TP-Env-Naume	es-391) (CQK0080-0	3) Soil San	npled: 11	/02/07 10:	35 Receiv	ed: 11/02/0	7 15:30		
Cyanide (total)	ND	0.50	mg/kg	1	CQ09156	11/06/07	11/06/07	EPA 9010B	
GEI07110210-04A (TP-Env-Naume	es-499) (CQK0080-0	4) Soil San	npled: 11	/02/07 11:	25 Receiv	ed: 11/02/0	7 15:30		
Cyanide (total)	ND	0.50	mg/kg	1	CQ09156	11/06/07	11/06/07	EPA 9010B	
GEI07110210-05A (TP-Env-Naume	es-425) (CQK0080-0	5) Soil San	pled: 11	/02/07 12:	10 Receiv	ed: 11/02/0	7 15:30		
Cyanide (total)	ND	0.50	mg/kg	1	CQ09156	11/06/07	11/06/07	EPA 9010B	

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks NV, 89431

Project Number: GEI07110210

CLS Work Order #: CQK0080

Project Manager: Reyna Vallejo

Project: GEI07110210

COC#:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Rep Result	orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07110210-01A (TP-Env-Naumes-317)	(CQK0080-01) Soi	il San	npled: 11	/02/07 08:4	5 Receiv	ved: 11/02/0	7 15:30		
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	11	"	11	н	"	"	
beta-BHC	ND	50	**	H	"	"	"	**	
delta-BHC	ND	50		н	. "	"	u u	"	
gamma-BHC (Lindane)	ND	50	**	"	"	"	"	**	
Chlordane	ND	100		11	**	"	**	Ħ	
4,4'-DDD	ND	75	11	11	"	· · ·	n.	H	
4,4'-DDE	ND	75	19	"	**	"	"	n .	
4,4'-DDT	ND	75	**	H	11	11	ıı .	"	
Dieldrin	ND	5.0	н	11	"	n,	"	"	
Endosulfan I	ND	75		н	**	"	n	n	
Endosulfan II	ND	75	"		11	"	"	н	
Endosulfan sulfate	ND	75		н	11	н	"	н	
Endrin	ND	75		Ħ		**	"	Ħ	
Endrin aldehyde	ND ND	75	"	"	**	"	"	n	
Heptachlor	ND	25		**	"	**	"	u .	
Heptachlor epoxide	ND ND	10	"	"	**	"	•		
Methoxychlor	ND ND	75		"	**		**	"	
Mirex	ND ND	50		"		п	"	"	
Toxaphene	ND	100	"	"		"	n.	u	
Surrogate: Tetrachloro-meta-xylene		110%	16	-139	")1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	
Surrogate: Decachlorobiphenyl		129%		-139 -141	"	"	"	"	
GEI07110210-02A (TP-Env-Naumes-338)					5 Receiv	ved: 11/02/0	7 15:30		
Aldrin	ND	5.0	μg/kg		CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	"	11	"	"	u	"	
beta-BHC	ND	50	11	**	**	11	n	•	
delta-BHC	ND	50	n	"	n	"	11	· · ·	
gamma-BHC (Lindane)	ND	50	"	"	н	**	"	u	
Chlordane	ND	100	11	11	**	"	"	и .	
4,4'-DDD	ND	75	**	"	11	"	11	11	
4,4'-DDE	ND	75		"	"	u	"	"	
4,4'-DDT	ND	75	,,	"			"	11	
Dieldrin	15	5.0	н		**	m	"	н	
Endosulfan I	ND	75	**	n	**	11	**	**	
Endosulfan II	ND ND	75	"	**		11	11	"	
		75 75		**	**	"	"	n	
Endosulfan sulfate	ND ND		"	"	"	11	"	u	
Endrin	ND ND	75 75		"		н	"	н	
Endrin aldehyde	ND	75 25	"		"			**	
Heptachlor	ND	25							

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110210
Project Number: GEI07110210
Project Manager: Reyna Vallejo

CLS Work Order #: CQK0080

COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GEI07110210-02A (TP-Env-Naumes-338	B) (CQK0080-02)	Soil San	pled: 11	/02/07 09:3	5 Receiv	ed: 11/02/0	7 15:30		
Heptachlor epoxide	ND	10	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Methoxychlor	ND	75		n	11	"	"	н	
Mirex	ND	50	**	n	н	"	11	"	
Toxaphene	ND	100	"	**	**	11	"	11	
Surrogate: Tetrachloro-meta-xylene		74.7 %	46-	139	"	"	<i>n</i> .	"	
Surrogate: Decachlorobiphenyl		85.3 %		141	"	"	"	"	
GEI07110210-03A (TP-Env-Naumes-39)	1) (COK0080-03)				5 Receiv	ed: 11/02/0	7 15:30		
		5.0		5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Aldrin	ND ND	3.0 10	μg/kg "	3	" "	11,00,07	"	"	
alpha-BHC beta-BHC	ND ND	50	"		•		"	"	
	ND ND	50 50	**		11		n	**	
delta-BHC gamma-BHC (Lindane)	ND ND	50 50	"	"		u		n	
•			"			11	ıı	n	
Chlordane	ND	100 75	11	"	"	"	11		
4,4'-DDD	ND			"		11	**	n	
4,4'-DDE	ND	75 75		11	11	н	**		
4,4'-DDT	ND		"	11	11	**	"	**	
Dieldrin	ND	5.0	"		11	**	**	**	
Endosulfan I	ND	75 75	" "	"	,,	"	n	11	
Endosulfan II	ND	75 75	"		,,		**	н	
Endosulfan sulfate	ND	75	"				"	"	
Endrin	ND	75	"	,,		11	n ⁻	11	
Endrin aldehyde	ND	75		"		"		"	
Heptachlor	ND	25	"	" "		,,	,,	11	
Heptachlor epoxide	ND	10	н	"			,,	н	
Methoxychlor	ND	75	"		"			"	
Mirex	ND	50	"	"	"		11		
Toxaphene	ND	100	"					<i>y</i>	
Surrogate: Tetrachloro-meta-xylene		97.0 %	46-	-139	"	"	"	"	
Surrogate: Decachlorobiphenyl		128 %		-141	"	"		"	
GEI07110210-04A (TP-Env-Naumes-49	9) (CQK0080-04)	Soil Sai	mpled: 11	1/02/07 11:	25 Receiv	/ed: 11/02/0	7 15:30		
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	"	"	"	11		"	
beta-BHC	ND	50	"	"	"	11	11		
delta-BHC	ND	50		11	11	"	H	"	
gamma-BHC (Lindane)	ND	50		•	"	"	11	"	
Chlordane	ND	100	**	n	н.,	"	**	11	
4,4'-DDD	ND	75	11	н	11	n n	11	n	
4,4'-DDE	ND	75			**	**	H	11	

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110210 Project Number: GEI07110210

CLS Work Order #: CQK0080

Sparks NV, 89431

Project Manager: Reyna Vallejo

COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GEI07110210-04A (TP-Env-Naumes-499)	(CQK0080-04) S	oil San	npled: 11/(02/07 11:2	5 Receiv	ed: 11/02/0	7 15:30		
4,4´-DDT	ND	75	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Dieldrin	6.5	5.0	"	"	11	"	"	H	
Endosulfan I	ND	75	"	"	#	"	"	**	
Endosulfan II	ND	75	"	"	**	"	"	"	
Endosulfan sulfate	ND	75	**	"	"	"	"	н	
Endrin	ND	75	"	"	H	Ħ	11	н	
Endrin aldehyde	ND	75	**	"		n	"	н	
Heptachlor	ND	25	11	"	**	11	u u	Ħ	
Heptachlor epoxide	ND	10	**	n	Ħ	n	**	n	
Methoxychlor	ND	75	**	11	**	Ü	"	n .	
Mirex	ND	50	"	n	**	11	. "	"	
Toxaphene	ND	100	**	"	Ħ	"	"	11	
Surrogate: Tetrachloro-meta-xylene		129 %	46-1	39	"	"	"	"	
Surrogate: Decachlorobiphenyl		132 %	52-1		. "	"	"	"	
GEI07110210-05A (TP-Env-Naumes-425)	(CQK0080-05) S		npled: 11/0	02/07 12:1	0 Receiv	ed: 11/02/0	7 15:30		
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	11		"	"	**	"	
beta-BHC	ND	50	**	"	**	"		"	
delta-BHC	ND	50	11	п	Ħ	Ħ	11	**	
gamma-BHC (Lindane)	ND	50	"	"	H	"	"	"	
Chlordane	ND	100	**	"	Ħ	**	"	"	
4,4'-DDD	ND	75	H		"	11	II .	**	
4,4'-DDE	ND	75	n	н	"	"	"	н	
4,4'-DDT	ND	75	n		"	н	11	н	
Dieldrin	ND	5.0	**	н	**	**	"	n	
Endosulfan I	ND	75	11			11	**	n .	
Endosulfan II	ND	75	**	"	11	11 -	**	"	
Endosulfan sulfate	ND	75	**	"	H	· "	"	"	
Endrin	ND	75	11	11	**	н	"	"	
Endrin aldehyde	ND	75	11	"	"	"	"	"	
Heptachlor	ND	25	**	"	**	11	"	"	
Heptachlor epoxide	ND	10	11	"	**		"		
Methoxychlor	ND	75	"	"	"	n	· ·	"	
Mirex	ND	50		**	"	"	"	"	
Toxaphene	ND	100	**	11	"	n	n	"	The second second second second
Surrogate: Tetrachloro-meta-xylene		122 %	46-1	39	"	"	"	"	
Surrogate: Decachlorobiphenyl		128 %	52-1		"	,, .	"	"	

California Laboratory Services

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110210 Project Number: GEI07110210

CLS Work Order #: CQK0080

Sparks NV, 89431 Project Manager: Reyna Vallejo

COC #:

Polychlorinated Biphenyls by EPA Method 8082A

Analyte	Repo Result L	rting imit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GE107110210-01A (TP-Env-Naumes-3	317) (CQK0080-01) Soil	San	npled: 11	/02/07 08:4	5 Receiv	ed: 11/02/0	7 15:30		
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/06/07	EPA 8082A	
Aroclor 1221	ND	20	11	*	"	"	"	u u	
Aroclor 1232	ND	20	11	"	11	"	. "	"	
Aroclor 1242	ND	20	"	"	11	II .	"	"	
Aroclor 1248	ND	20	*	"	n	"	11	11	
Aroclor 1254	ND	20	"	"	**	H	"	II .	
Aroclor 1260	ND	20	"	11	11	11		11	
Surrogate: Decachlorobiphenyl	88.	8%		150	"	"	"	"	
GEI07110210-02A (TP-Env-Naumes-	338) (CQK0080-02) Soil	Sar	npled: 11	/02/07 09:3	5 Receiv	ed: 11/02/0	7 15:30		
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/06/07	EPA 8082A	
Aroclor 1221	ND	20	"	**	"	"	"	"	
Aroclor 1232	ND	20	"		**	11	ıı	"	
Aroclor 1242	ND	20		"	11	"	n	11	
Aroclor 1248	ND	20	11	"	11	"	H	11	
Aroclor 1254	ND	20	**	"	11	"	"	11	
Aroclor 1260	ND	20	"	11	"	"			the grant of the same of the same
Surrogate: Decachlorobiphenyl		2 %		-150	. "	"	"	n ·	
GEI07110210-03A (TP-Env-Naumes-	391) (CQK0080-03) Soil	Sai	npled: 11	1/02/07 10:3	5 Receiv	/ed: 11/02/0	7 15:30		
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/06/07	EPA 8082A	
Aroclor 1221	ND	20	н	**	"	"	H	н	
Aroclor 1232	ND	20	**	H	11	"	"	"	
Aroclor 1242	ND	20	"	Ħ	н	"	"	"	
Aroclor 1248	ND	20	"	"	"	II	"	"	
Aroclor 1254	ND	20	"	H	"	11	"	"	
Aroclor 1260	ND	20	**	#	"	11		1	
Surrogate: Decachlorobiphenyl	98	.0%	50-	-150	"	"	"	"	
GEI07110210-04A (TP-Env-Naumes-	499) (CQK0080-04) Soil	Sa	mpled: 11	1/02/07 11:2	25 Receiv	ved: 11/02/0	7 15:30		
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/06/07	EPA 8082A	
Aroclor 1221	ND	20		**	"	11		"	
Aroclor 1232	ND	20	11	"	"	"	"	"	
Aroclor 1242	ND	20	"	11	"	11	"	**	
Aroclor 1248	ND	20	"	"	. "	11	"	n .	
Aroclor 1254	ND	20	"	**	11	"	"	11	
Aroclor 1260	ND	20	"	11	. 11		H		
Surrogate: Decachlorobiphenyl		3.0 %		-150	"	"	"	"	
GEI07110210-05A (TP-Env-Naumes	425) (COK0080-05) Soi	Sa	mpled: 1	1/02/07 12:	10 Recei	ved: 11/02/	07 15:30		

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: Project Number: GEI07110210

GEI07110210

CLS Work Order #: CQK0080

Sparks NV, 89431

Project Manager: Reyna Vallejo

COC#:

Polychlorinated Biphenyls by EPA Method 8082A

Analyte	Result	Reporting Limit	Units	Dilution	n Batch	Prepared	Analyzed	Method	Notes
GEI07110210-05A (TP-Env-Naumes	-425) (CQK0080-05) Soil San	npled: 11	/02/07 12	:10 Receiv	ed: 11/02/0	7 15:30		
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/06/07	EPA 8082A	
Aroclor 1221	ND	20	"	**	"	"	**		
Aroclor 1232	ND	20	**	н	u u	"	"	"	
Aroclor 1242	ND	20	**	"	"	"	•	"	
Aroclor 1248	ND	20	**	**	"	n		"	
Aroclor 1254	ND	20	11	"	**	н	н	11	
Aroclor 1260	ND	20	"	11	"	"	11	11	
Surrogate: Decachlorobiphenyl		57.2 %	50-	150	"	"	"	"	

Fax: 916-638-4510

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431

Project: GEI07110210 Project Number: GEI07110210

Project Manager: Reyna Vallejo

COC#:

CLS Work Order #: CQK0080

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

							4/220		DDD	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch CQ09156 - General Preparation										
Blank (CQ09156-BLK1)				Prepared	& Analyze	ed: 11/06/	07			
Cyanide (total)	ND	0.50	mg/kg							
LCS (CQ09156-BS1)				Prepared	& Analyze	ed: 11/06/	07			
Cyanide (total)	4.52	0.50	mg/kg	5.00		90.3	75-125			
LCS Dup (CQ09156-BSD1)				Prepared	& Analyz	ed: 11/06/	07			
Cyanide (total)	4.48	0.50	mg/kg	5.00		89.6	75-125	0.778	25	
Matrix Spike (CQ09156-MS1)	So	urce: CQK0(080-01	Prepared	& Analyz	ed: 11/06/	07			
Cyanide (total)	4.68	0.50	mg/kg	5.00	0.0950	91.8	75-125			
Matrix Spike Dup (CQ09156-MSD1)	So	urce: CQK00	080-01	Prepared	& Analyz	ed: 11/06/	07			
Cyanide (total)	4.66	0.50	mg/kg	5.00	0.0950	91.4	75-125	0.428	25	

CA DOHS ELAP Accreditation/Registration Number 1233

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110210 Project Number: GEI07110210

CLS Work Order #: CQK0080

Sparks NV, 89431

Project Manager: Reyna Vallejo

COC#:

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09157 - LUFT-DHS GCNV										
Blank (CQ09157-BLK1)				Prepared:	11/06/07	Analyzed	: 11/08/07			
Aldrin	ND	1.0	μg/kg							
alpha-BHC	ND	2.0	"							
beta-BHC	ND	10	"							
delta-BHC	ND	10	н							
gamma-BHC (Lindane)	ND	10	"							
Chlordane	ND	20	н							
4,4´-DDD	ND	15	"							
4,4'-DDE	ND	15	"							
4,4'-DDT	ND	15	u.							
Dieldrin	ND	1.0	"							
Endosulfan I	ND	15	н							
Endosulfan II	ND	15	**							
Endosulfan sulfate	ND	15	**							
Endrin	ND	15	"							
Endrin aldehyde	ND	15	"							
Heptachlor	ND	5.0	"							
Heptachlor epoxide	ND	2.0	**							
Methoxychlor	ND	15	H							
Mirex	ND	10	11							
Toxaphene	ND	20	11							
Surrogate: Tetrachloro-meta-xylene	7.28		"	8.33		87.3	46-139			
Surrogate: Decachlorobiphenyl	8.96		"	8.33		108	52-141			
LCS (CQ09157-BS1)				Prepared	11/06/07	Analyzed	l: 11/08/0 <mark>7</mark>			
Aldrin	12.8	1.0	μg/kg	16.7		76.9	47-132			
gamma-BHC (Lindane)	12.4	10	"	16.7		74.5	56-133			
4,4'-DDT	16.7	15	"	16.7		100	46-137			
Dieldrin	14.4	1.0	"	16.7		86.2	44-143			
Endrin	14.9	15	**	16.7		89.4	30-147			
Heptachlor	13.1	5.0	н	16.7		78.6	33-148			
Surrogate: Tetrachloro-meta-xylene	5.25		"	8.33		63.0	46-139			
Surrogate: Decachlorobiphenyl	6.98		"	8.33		<i>83.7</i>	52-141			

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks NV, 89431

Project: GEI07110210 Project Number: GEI07110210

CLS Work Order #: CQK0080
COC #:

Project Manager: Reyna Vallejo

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09157 - LUFT-DHS GCNV										
LCS Dup (CQ09157-BSD1)				Prepared:	11/06/07	Analyzed	l: 11/08/07			
Aldrin	12.7	1.0	μg/kg	16.7		76.3	47-132	0.725	30	
gamma-BHC (Lindane)	12.2	10	"	16.7		73.2	56-133	1.70	30	
4,4´-DDT	16.4	15	"	16.7		98.6	46-137	1.45	30	
Dieldrin	14.2	1.0	н	16.7		85.5	44-143	0.892	30	
Endrin	14.6	15	"	16.7		87.8	30-147	1.73	30	
Heptachlor	12.9	5.0	"	16.7		77.2	33-148	1.83	30	
Surrogate: Tetrachloro-meta-xylene	5.00		"	8.33		59.9	46-139			
Surrogate: Decachlorobiphenyl	6.59		"	8.33		<i>79.1</i>	52-141			
Matrix Spike (CQ09157-MS1)	So	urce: CQK00	80-01	Prepared:	11/06/07	Analyzed	l: 11/08/07			
Aldrin	15.5	5.0	μg/kg	16.7	ND	93.3	47-138			
gamma-BHC (Lindane)	12.9	50	11	16.7	ND	77.4	38-144			
4,4'-DDT	19.9	75	11	16.7	ND	119	41-157			
Dieldrin	17.2	5.0	H	16.7	ND	103	46-155			
Endrin	16.8	75	"	16.7	ND	101	34-149			
Heptachlor	15.1	25	"	16.7	ND	90.5	36-155			w
Surrogate: Tetrachloro-meta-xylene	18.2		"	20.8		87.3	46-139			
Surrogate: Decachlorobiphenyl	20.5		"	20.8		98.6	52-141			
Matrix Spike Dup (CQ09157-MSD1)	So	urce: CQK0(80-01	Prepared:	11/06/07	Analyzed	i: 11/08/07			
Aldrin	16.8	5.0	μg/kg	16.7	ND	101	47-138	7.57	35	
gamma-BHC (Lindane)	14.9	50	"	16.7	ND	89.1	38-144	14.1	35	
4,4'-DDT	19.8	75	"	16.7	ND	119	41-157	0.635	35	
Dieldrin	17.7	5.0	11	16.7	ND	106	46-155	3.36	35	
Endrin	16.9	75	11	16.7	ND	102	34-149	0.954	35	
Heptachlor	16.9	25	"	16.7	ND	101	36-155	11.3	35	age company and another the tree are
Surrogate: Tetrachloro-meta-xylene	23.3		"	20.8		112	46-139			
Surrogate: Decachlorobiphenyl	24.4		"	20.8		117	52-141			

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110210 Project Number: GEI07110210

CLS Work Order #: CQK0080

Sparks NV, 89431

Project Manager: Reyna Vallejo

COC#:

Polychlorinated Biphenyls by EPA Method 8082A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09144 - LUFT-DHS GCNV					:					
Blank (CQ09144-BLK1)				Prepared &	& Analyze	d: 11/06/0)7	-		
Aroclor 1016	ND	20	μg/kg	- Agent of the State of the Sta				_		
Aroclor 1221	ND	20	**							
Aroclor 1232	ND	20	•							
Aroclor 1242	ND	20	"							
Aroclor 1248	ND	20	"							
Aroclor 1254	ND	20	"							
Aroclor 1260	ND	20	**							Market at the second of the se
Surrogate: Decachlorobiphenyl	7.05		"	8.33		84.6	50-150			and the second s
LCS (CQ09144-BS1)				Prepared a	& Analyze	:d: 11/06/0)7			
Aroclor 1260	79.5	20	μg/kg	83.3		95.4	29-131		management of the second of the second	
Surrogate: Decachlorobiphenyl	8.02		"	8.33		96.2	50-150			
LCS Dup (CQ09144-BSD1)				Prepared a	& Analyze	d: 11/06/0)7			
Aroclor 1260	78.5	20	μg/kg	83.3		94.2	29-131	1.22	30	The second secon
Surrogate: Decachlorobiphenyl	7.37		"	8.33		88.4	50-150			
Matrix Spike (CQ09144-MS1)	Sou	urce: CQK00	80-02	Prepared o	& Analyze	d: 11/06/0				
Aroclor 1260	79.0	20	μg/kg	83.3	ND	94.8	29-131			
Surrogate: Decachlorobiphenyl	7.85		"	8.33		94.2	50-150			
Matrix Spike Dup (CQ09144-MSD1)	Sou	urce: CQK00	80-02	Prepared o	& Analyze	d: 11/06/0	07			which particularly the control of th
Aroclor 1260	78.9	20	μg/kg	83.3	ND	94.6	29-131	0.110	30	
Surrogate: Decachlorobiphenyl	8.12		11	8.33	The Angelogy - The State	97.4	50-150			

Fax: 916-638-4510

California Laboratory Services

11/08/07 11:10

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110210 Project Number: GEI07110210

CLS Work Order #: CQK0080

Sparks NV, 89431

Project Manager: Reyna Vallejo

COC #:

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Andrew Adinolfi (916) 631-4500 x aadinolfi@geiconsultants.com EMail Address

Rancho Cordova, CA 95670

GEI Consultants

10860 Gold Center Dr. Ste. 350

P0:

Client's COC #: 17808

QC Level: 1

= Final Rpt Only

Job : 050115/TRLIA

CA ANENDED 1 of 1

WorkOrder: GEIC07110210

Report Due By: 5:00 PM On: 19-Nov-07

EDD Required: No

Sampled by: Client Cooler Temp

Samples Received

Date Printed

11-Dec-07

										Requested Tests	
Alpha Sample ID	Client Sample ID	Matı	Collection No. of Bottles Matrix Date Alpha Sub	No. of Bottles Alpha Sub TAT	f Bottle Sub	TAT	8081_S	8082_S	CYANIDE_T OTAL	METALS_S	Sample Remarks
GEI07110210-01A	GEI07110210-01A TP-ENV-NAUMES-317	so	SO 11/02/07 08:45	_	_	10	PEST	РСВ	Cyanide	Spec. list	8081, 8082, and Cyanide subbed to CLS.
GEI07110210-02A	GEI07110210-02A TP-ENV-NAUMES-338	SO	SO 11/02/07 09:35	_	_	10	PEST	РСВ	Cyanide	Spec. list	8081, 8082, and Cyanide subbed to CLS.
GEI07110210-03A	GEI07110210-03A TP-ENV-NAUMES-391	SO	11/02/07 10:35	_	_	10	PEST	РСВ	Cyanide	Spec. list	8081, 8082, and Cyanide subbed to CLS.
GEI07110210-04A	TP-ENV-NAUMES-499	SO	11/02/07 11:25	_	_	10	PEST	РСВ	Cyanide	Spec. list	8081, 8082, and Cyanide subbed to CLS.
GEI07110210-05A	GEI07110210-05A TP-ENV-NAUMES-425	SO	11/02/07 12:10	_	_	10	PEST	РСВ	Cyanide	Spec. list	8081, 8082, and Cyanide subbed to CLS.

Comments: Security seals intact. Frozen ice. COC prelogged in order for Sacramento office to sub 8081, 8082, and Cyanide to CLS. Per phone conversation w/ Andrew 11/5/07 @ 9:10 he wants the same analyses as work order GEI07092653. ES: Amended 12/11/07 @ 14:40 to add Hg to Metals list, per Andrew. LE **Print Name** Company 411/07 14:40

atrica

Tarosa

Alpha Analytical, Inc.

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

Logged in by:

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Due By: 5:00 PM On: 19-Nov-07

WorkOrder: GEIC07110210

Page: 1 of 1

Report Attention Andrew Adinolfi Phone Number (916) 631-4500 x aadinolfi@geiconsultants.com EMail Address

GEI Consultants

10860 Gold Center Dr. Ste. 350

EDD Required: No

Sampled by: Client Cooler Temp

05-Nov-07 **Date Printed**

Samples Received 02-Nov-07

Job: 050115/TRLIA

QC Level: 1 = Final Rpt Only

Client's COC #: 17808

Rancho Cordova, CA 95670

Sample ID GEI07110210-02A TP-ENV-NAUMES-338 GEI07110210-01A GEI07110210-05A TP-ENV-NAUMES-425 GEI07110210-04A TP-ENV-NAUMES-499 GEI07110210-03A TP-ENV-NAUMES-391 TP-ENV-NAUMES-317 Sample ID So SO SO SO SO Matrix Date 11/02/07 12:10 11/02/07 11:25 11/02/07 10:35 11/02/07 08:45 11/02/07 09:35 Collection No. of Bottles Alpha Sub TAT 6 6 6 6 5 8081_S PEST PEST PEST PEST PEST 8082_S B PCB PCB PCB PCB CYANIDE_T METALS_S
OTAL 0 Cyanide Cyanide Cyanide Requested Tests Spec. list Spec. list Spec. list Spec. list Spec. list 8081, 8082, and Cyanide 8081, 8082, and Cyanide subbed to CLS. 8081, 8082, and Cyanide 8081, 8082, and Cyanide subbed to CLS. 8081, 8082, and Cyanide Sample Remarks subbed to CLS. subbed to CLS. subbed to CLS.

Logged in by:

Musica extans

tlizabeth

(Derrogian

Alpha Analytical, Inc.

15.01

Comments:

Security seals intact. Frozen ice. COC prelogged in order for Sacramento office to sub 8081, 8082, and Cyanide to CLS. Per phone conversation w/ Andrew 11/5/07 @ 9:10 he wants the same analyses as work order: GEI07092653. ES Signature **Print Name** Company Date/Time

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other)

city, State, Zip RANCHO CORDOVA, CA 456.70 Billing Information: Phone Number 916-631-4500 Fax 916-631-4500 Address 10860 GOLD CENTER OR STE 350 **ADDITIONAL INSTRUCTIONS:** Sampled Sampled Received by Relinquished by Received by Relinquished by 1210 £2:₹ 8:4511/2 City, State, Zip Client Name Received by Relinquished by Address Time Date So SS 50 SO Below See Key Matrix* 50 Signature Sampled by CONSULTANTS, INC wvageau F101110210-01 Lab ID Number (Use Only TP-ENV-NAUMES -TF. ENV-NAUMES -Report Attention Phone # 510-350-2902 TP-ENV-NAUMES- 425 TP-ENY-NAUMES- 499 TP-ENY-NAUMES-31 EMail Address P.O. # addinotifie ger consultants Sample Description **Print Name** 17022 Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Phone (775) 355-1044 Fax (775) 355-0406 Sparks, Nevada 89431-5778 Job # 245 H 6 96 Total and type of S V ** See below 25 containers Consultants PCB3 Samples Collected From Which State? Company 92 Analyses Required OTHER -5-01 1-7-0 さなり Date # 07110210 Sub To CI 808/ 6. Global ID # EDD EDF? YES lotal Required QC Level? Page #_ REMARKS 17308 14:10 141V MARIGH Time 2 Š ₹

of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

'Key: AQ - Aqueous

SO - Soil

WA - Waste

OT - Other

AR - Air

**: L-Liter

V-Voa

S-Soil Jar

O-Orbo

T-Tedlar

B-Brass

P-Plastic

OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

GEI Consultants 10860 Gold Center Dr. Ste. 350 Rancho Cordova, CA 95670 Attn: Andrew Adinolfi Phone: (916) 631-4500

Fax:

Date Received: 11/06/07

Job#: 050115/TRLIA

Metals by ICPMS EPA Method SW6020/SW6020A

		Parameter	Concentration	Reporting	Date	Date
				Limit	Sampled	Analyzed
Client ID:	TP-ENV-518					
Lab ID:	GEI07110654-01A	Beryllium (Be)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Chromium (Cr)	49	1.0 mg/Kg	11/05/07	11/08/07
		Manganese (Mn)	460	1.0 mg/Kg	11/05/07	11/08/07
		Iron (Fe)	33,000	500 mg/Kg	11/05/07	11/08/07
		Nickel (Ni)	42	2.0 mg/Kg	11/05/07	11/08/07
		Copper (Cu)	48	2.0 mg/Kg	11/05/07	11/08/07
		Zinc (Zn)	49	20 mg/Kg	11/05/07	11/08/07
		Arsenic (As)	7.2	1.0 mg/Kg	11/05/07	11/08/07
		Selenium (Se)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Silver (Ag)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Cadmium (Cd)	4.9	1.0 mg/Kg	11/05/07	11/08/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/05/07	11/08/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/05/07	11/08/07
Client ID:	TP-ENV-520					
Lab ID:	GEI07110654-02A	Beryllium (Be)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Chromium (Cr)	41	1.0 mg/Kg	11/05/07	11/08/07
		Manganese (Mn)	310	1.0 mg/Kg	11/05/07	11/08/07
		Iron (Fe)	24,000	500 mg/Kg	11/05/07	11/08/07
		Nickel (Ni)	48	2.0 mg/Kg	11/05/07	11/08/07
		Copper (Cu)	32	2.0 mg/Kg	11/05/07	11/08/07
		Zinc (Zn)	36	20 mg/Kg	11/05/07	11/08/07
		Arsenic (As)	6.8	1.0 mg/Kg	11/05/07	11/08/07
		Selenium (Se)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Silver (Ag)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/05/07	11/08/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/05/07	11/08/07

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	TP-ENV-522					
Lab ID:	GEI07110654-03A	Beryllium (Be)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Chromium (Cr)	50	1.0 mg/Kg	11/05/07	11/08/07
		Manganese (Mn)	480	1.0 mg/Kg	11/05/07	11/08/07
		Iron (Fe)	30,000	500 mg/Kg	11/05/07	11/08/07
		Nickel (Ni)	54	2.0 mg/Kg	11/05/07	11/08/07
		Copper (Cu)	44	2.0 mg/Kg	11/05/07	11/08/07
		Zinc (Zn)	57	20 mg/Kg	11/05/07	11/08/07
		Arsenic (As)	5.3	1.0 mg/Kg	11/05/07	11/08/07
		Selenium (Se)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Silver (Ag)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/05/07	11/08/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/05/07	11/08/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/05/07	11/08/07
Client ID:	TP-ENV-521					
Lab ID :	GEI07110654-04A	Beryllium (Be)	ND	1.0 mg/Kg	11/05/07	11/09/07
		Chromium (Cr)	34	1.0 mg/Kg	11/05/07	11/09/07
		Manganese (Mn)	400	1.0 mg/Kg	11/05/07	11/09/07
		Iron (Fe)	22,000	500 mg/Kg	11/05/07	11/09/07
		Nickel (Ni)	37	2.0 mg/Kg	11/05/07	11/09/07
		Copper (Cu)	27	2.0 mg/Kg	11/05/07	11/09/07
		Zinc (Zn)	37	20 mg/Kg	11/05/07	11/09/07
		Arsenic (As)	4.2	1.0 mg/Kg	11/05/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/05/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/05/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/05/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/05/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/05/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/05/07	11/09/07
Client ID:	TP-ENV-519					
Lab ID :	GEI07110654-05A	Beryllium (Be)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Chromium (Cr)	43	1.0 mg/Kg	11/06/07	11/09/07
		Manganese (Mn)	310	1.0 mg/Kg	11/06/07	11/09/07
		Iron (Fe)	24,000	500 mg/Kg	11/06/07	11/09/07
		Nickel (Ni)	45	2.0 mg/Kg	11/06/07	11/09/07
		Copper (Cu)	32	2.0 mg/Kg	11/06/07	11/09/07
		Zinc (Zn)	43	20 mg/Kg	11/06/07	11/09/07
		Arsenic (As)	3.9	1.0 mg/Kg	11/06/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/06/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/06/07	11/09/07

050115/TRLIA Page 2 of 3

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	TP-ENV-515					
Lab ID:	GEI07110654-06A	Beryllium (Be)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Chromium (Cr)	81	1.0 mg/Kg	11/06/07	11/09/07
		Manganese (Mn)	360	1.0 mg/Kg	11/06/07	11/09/07
		Iron (Fe)	25,000	500 mg/Kg	11/06/07	11/09/07
		Nickel (Ni)	91	2.0 mg/Kg	11/06/07	11/09/07
		Copper (Cu)	33	2.0 mg/Kg	11/06/07	11/09/07
		Zinc (Zn)	50	20 mg/Kg	11/06/07	11/09/07
		Arsenic (As)	3.3	1.0 mg/Kg	11/06/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/06/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/06/07	11/09/07
Client ID:	TP-ENV-516					
Lab ID :	GEI07110654-07A	Beryllium (Be)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Chromium (Cr)	86	1.0 mg/Kg	11/06/07	11/09/07
		Manganese (Mn)	460	1.0 mg/Kg	11/06/07	11/09/07
		Iron (Fe)	27,000	500 mg/Kg	11/06/07	11/09/07
		Nickel (Ni)	91	2.0 mg/Kg	11/06/07	11/09/07
		Copper (Cu)	44	2.0 mg/Kg	11/06/07	11/09/07
		Zinc (Zn)	52	20 mg/Kg	11/06/07	11/09/07
		Arsenic (As)	4.2	1.0 mg/Kg	11/06/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Mercury (Hg)	ND	0.20 mg/Kg	11/06/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/06/07	11/09/07
Client ID:	TP-ENV-517					
Lab ID:	GEI07110654-08A	Beryllium (Be)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Chromium (Cr)	61	1.0 mg/Kg	11/06/07	11/09/07
		Manganese (Mn)	360	1.0 mg/Kg	11/06/07	11/09/07
		Iron (Fe)	25,000	500 mg/Kg	11/06/07	11/09/07
		Nickel (Ni)	52	2.0 mg/Kg	11/06/07	11/09/07
		Copper (Cu)	34	2.0 mg/Kg	11/06/07	11/09/07
		Zinc (Zn)	43	20 mg/Kg	11/06/07	11/09/07
		Arsenic (As)	8.3	1.0 mg/Kg	11/06/07	11/09/07
		Selenium (Se)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Silver (Ag)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Cadmium (Cd)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Antimony (Sb)	ND	1.0 mg/Kg	11/06/07	11/09/07
		Mercury (Hg)	0.41	0.20 mg/Kg	11/06/07	11/09/07
		Thallium (Tl)	ND	1.0 mg/Kg	11/06/07	11/09/07

This replaces the report originally signed 11/20/07, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl Kandy Saulnur Oalter Arrihner Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

12/12/07

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 12-Dec-07		QC Sı	ımmar	y Repor	t				Work Orde 07110654	
Method Blank File ID: 110807.B\A028_ICB.D		Туре М		est Code: El		nod SW60		s Date:	11/08/2007 22:29	·
Sample ID: MB-18687	Units : mg/l	Kg	Run ID: IC	P/MS_0711	A80		Prep Da	ate:	11/08/2007	
Analyte	Result	PQL				LCL(ME)	UCL(ME) F	RPDRef\	/al %RPD(Limit)	Qual
Beryllium (Be)	ND	1								
Chromium (Cr)	ND	1								
Manganese (Mn)	ND	1								
Iron (Fe)	ND	500								
Nickel (Ni)	ND	2								
Copper (Cu) Zinc (Zn)	ND ND	2								
Arsenic (As)	ND ND	20								
Selenium (Se)	ND ND	1								
Silver (Ag)	ND	1								
Cadmium (Cd)	ND	1								
Antimony (Sb)	ND	1								
Mercury (Hg)	ND	0.2								
Thallium (TI)	ND	1								
Laboratory Control Spike		Type L	CS Te	est Code: El	PA Meti	hod SW60				
File ID: 110807.B\A029_LCS.D			Ва	atch ID: 186	87		Analysi	s Date:	11/08/2007 22:34	
Sample ID: LCS-18687	Units : mg /	Kg	Run ID: IC	P/MS_0711	A80		Prep D	ate:	11/08/2007	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRef\	/al %RPD(Limit)	Qual
Beryllium (Be)	26.5	1	25		106	77	124			
Chromium (Cr)	25.4	1	25		101	75	120			
Manganese (Mn)	265	1	250		106	79	121			
Iron (Fe)	5320	500			106	80	120			
Nickel (Ni)	26.9	2			107	80 80	124 125			
Copper (Cu) Zinc (Zn)	27.1 27.1	2 20			108 108	73	135			
Arsenic (As)	26.7	1	25		107	80	120			
Selenium (Se)	26.6	1	25		106	80	120			
Silver (Ag)	24.7	1	25		99	62	132			
Cadmium (Cd)	26.4	1	25		105	80	120			
Antimony (Sb)	18.6	1	25		74	53	124			
Mercury (Hg)	0.531	0.2			106	68	140			
Thallium (TI)	24.2	1	25		97	73	120			
Sample Matrix Spike		Type M		est Code: El		hod SW60	20			
File ID: 110807.B\A03MS.D\			Ва	atch ID: 186	87		-		11/08/2007 22:49	
Sample ID: 07110729-01AMS	Units : mg/	Kg		P/MS_0711			Prep D		11/08/2007	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) F	RPDRef\	/al %RPD(Limit)	Qual
Beryllium (Be)	26.7	1	25	0	107	75	132			
Chromium (Cr)	37.4	1	25	13	97	50	150			
Manganese (Mn)	593	1	250	296.1	119	50	146			
Iron (Fe) Nickel (Ni)	28500	500		22340	123	50	150 140			
Copper (Cu)	33 71.1	2 2		8.494 44.58	98 106	50 54	149 143			
Zinc (Zn)	168	20		147.7	82	50	147			
Arsenic (As)	26.1	1		3.139		60	130			
Selenium (Se)	23.4	1		0		69	130			
Silver (Ag)	26.3	1	25	2.793	94	62	132			
Cadmium (Cd)	26	1		0	104	70	130			
Antimony (Sb)	20.6	1		1.893	75 70	50	130			
Mercury (Hg) Thallium (TI)	0.662	0.2		0.3038		65 70	150			
mamum (11)	23.5	1	25	0	94	70	130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: Work Order: QC Summary Report 12-Dec-07 07110654 Type MSD Test Code: EPA Method SW6020 Sample Matrix Spike Duplicate File ID: 110807.B\A03MSD.D\ Batch ID: 18687 Analysis Date: 11/08/2007 22:54 Sample ID: 07110729-01AMSD Units: mg/Kg Run ID: ICP/MS_071108A Prep Date: 11/08/2007 Analyte SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRefVal %RPD(Limit) Qual Result **PQL** Bervllium (Be) 25.6 102 75 132 26.69 4.3(20)Chromium (Cr) 35.9 25 13 92 50 150 37.37 4.0(20)1 Manganese (Mn) 465 67 50 146 593 24.2(20) R5 1 250 296.1 Iron (Fe) 26000 500 5000 22340 73 50 150 28470 9.0(20) Nickel (Ni) 92 50 149 32.98 4.3(20)31.6 2 25 8.494 Copper (Cu) 70.8 2 25 44.58 105 54 143 71.12 0.5(20)Zinc (Zn) 20 50 147 168.2 3.0(20) 173 25 147.7 102 Arsenic (As) 26.7 25 3.139 94 60 130 26.05 2.6(20) Selenium (Se) 1.7(20) 23.8 25 95 69 130 23.38 Silver (Ag) 94 62 132 26.28 0.3(20)26.2 25 2.793 Cadmium (Cd) 25.8 25 103 70 130 25.96 0.6(20)1 0 Antimony (Sb) 20.58 3.3(20) 1.893 50 130 21.3 25 77 Mercury (Hg) 0.5 6.8(20) 0.708 0.2 0.3038 81 65 150 0.6617 Thallium (TI) 0.0(20)

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

25

94

70

130

23.52

R5 = MS/MSD RPD exceed the laboratory control limit. Recovery met acceptance criteria.

23.5

3249 Fitzgerald Road Rancho Cordova, CA 95742

November 09, 2007

CLS Work Order #: CQK0151 COC #:

Reyna Vallejo Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks, NV 89431

Project Name: GEI07110654

Enclosed are the results of analyses for samples received by the laboratory on 11/06/07 16:00. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA DOHS ELAP Accreditation/Registration number 1233

California Laboratory Services

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110654
Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC#:

Conventional Chemistry Parameters by APHA/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07110654-01A (TP-ENV-518) (CQK015	51-01) Soil	Sampled: 1	1/05/07 14:	:15 Rec	ceived: 11/0	6/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-02A (TP-ENV-520) (CQK015	51-02) Soil	Sampled: 1	1/05/07 15	:20 Re	ceived: 11/0	6/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-03A (TP-ENV-522) (CQK015	51-03) Soil	Sampled: 1	1/05/07 16	:05 Re	ceived: 11/0	6/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-04A (TP-ENV-521) (CQK01	51-04) Soil	Sampled: 1	1/05/07 18	:50 Re	ceived: 11/0	6/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-05A (TP-ENV-519) (CQK01	51-05) Soil	Sampled: 1	1/06/07 07	:50 Re	ceived: 11/0	6/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-06A (TP-ENV-515) (CQK01	51-06) Soil	Sampled: 1	1/06/07 09	:00 Re	ceived: 11/0	06/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-07A (TP-ENV-516) (CQK01	51-07) Soil	Sampled: 1	1/06/07 09	:40 Re	ceived: 11/0	06/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	
GEI07110654-08A (TP-ENV-517) (CQK01	51-08) Soil	Sampled: 1	1/06/07 10):35 Re	ceived: 11/0	06/07 16:00			
Cyanide (total)	ND	0.50	mg/kg	1	CQ09254	11/09/07	11/09/07	EPA 9010B	

CA DOHS ELAP Accreditation/Registration Number 1233

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Sparks NV, 89431

Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07110654-01A (TP-ENV-518) (CQK	0151-01) Soil	Sampled: 1	1/05/07 14	:15 Rec	eived: 11/0	6/07 16:00			QC-2H
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	"		"	"	"	11	
beta-BHC	ND	50		"	**	**	11	"	
delta-BHC	ND	50	"	**	**	"	"	"	
gamma-BHC (Lindane)	ND	50	**	#	н	"	. "		
Chlordane	ND	100	**	"	"	"	"		
4,4'-DDD	ND	75	"	"	**	"	"		
4,4'-DDE	ND	75	**	"	**	II	**		
4,4'-DDT	ND	75	H	**	**	11	"	"	
Dieldrin	ND	5.0	"	•		. "	n		
Endosulfan I	ND	75	11		**	"	11		
Endosulfan II	ND	75		**	"	"	11		
Endosulfan sulfate	ND	75	n	Ħ		"	"		
Endrin	ND	75	11	** .		"	"	"	
Endrin aldehyde	ND	75	*	**	. "	"	"	"	
Heptachlor	ND	25	"	**	**	"	#1	"	
Heptachlor epoxide	ND	10	•	**	**	"	"	"	
Methoxychlor	ND	75	•	н	n	"	**	H	
Mirex	ND	50		"	11	11	"	"	
Toxaphene	ND	100	n	"	11	11			Mark 2010 10 10 10 10 10 10 10 10 10 10 10 10
Surrogate: Tetrachloro-meta-xylene		109 %	46-	139	"	"	"	"	
Surrogate: Decachlorobiphenyl		106 %	52-		"	"	"	"	
GEI07110654-02A (TP-ENV-520) (CQF	(0151-02) Soil		1/05/07 1	5:20 Red	ceived: 11/0	06/07 16:00			QC-21
Aldrin	ND	5.0	μg/kg	5	CQ09157		11/08/07	EPA 8081A	
alpha-BHC	ND	10	"	"	"	"	H	"	
beta-BHC	ND	50	"	**	н '	"	**	"	
delta-BHC	ND	50	*	*	11	"		"	
gamma-BHC (Lindane)	ND	50	**	**	"	"	**	" .	,
Chlordane	ND	100		**	"	"	11	"	
4,4'-DDD	ND	75	н	"	11	"	"	n	
4,4'-DDE	ND	75	**		H	•	**	. "	
4,4'-DDT	ND	75	. 11	u u	**	*	**	11	
Dieldrin	ND	5.0	**	**	**	11	"	"	
	ND	75		"	**	"	11	"	
Endoculfan I		75	"	11	**	n	**	n	
Endosulfan I	ИD	/ 1					11		
Endosulfan II	ND ND		н	н	**	"	"		
Endosulfan II Endosulfan sulfate	ND	75	11	11	"	"	"	11	
Endosulfan II									

Fax: 916-638-4510

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Sparks NV, 89431 Project Manager: Reyna Vallejo

COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units	Dilutio	n Batch	Prepared	Analyzed	Method	Notes
GEI07110654-02A (TP-ENV-520) (CQK)	0151-02) Soil	Sampled: 1	1/05/07 15	:20 R	eceived: 11/0	6/07 16:00			QC-2H
Heptachlor epoxide	ND	10	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Methoxychlor	ND	75	"	н	n .	"	н	19	
Mirex	ND	50	"	"	"	ï	**	н	
Toxaphene	ND	100	"	"	**	и	11	11	
Surrogate: Tetrachloro-meta-xylene		112 %	46-1	39	"	"	"	"	
Surrogate: Decachlorobiphenyl		110 %	52-1		"	"	"	"	
GE107110654-03A (TP-ENV-522) (CQK)	0151_03) Soil				eceived: 11/0	6/07 16:00			QC-2H
						11/06/07	11/08/07	EPA 8081A	
Aldrin	ND	5.0	μg/kg "	5	CQ09157	11/00/07	11/06/07	"	
alpha-BHC	ND	10	"	"	" "		"	"	
beta-BHC	ND	50	"	"	" "		"	n	
delta-BHC	ND	50	"	,,		**	**	"	
gamma-BHC (Lindane)	ND	50	"			**	"	"	
Chlordane	ND	100	"			#	11		
4,4'-DDD	ND	75			,,		11	11	
4,4'-DDE	ND	75	"	"			11	н	
4,4'-DDT	ND	75					,,	н	
Dieldrin	ND	5.0	"	"	"	,,		**	
Endosulfan I	ND	75	"	,,			,,	"	
Endosulfan II	ND	75		,,	"		**	н	
Endosulfan sulfate	ND	75	"	,			"	н	
Endrin	ND	75		"				"	
Endrin aldehyde	ND	75	"		"		,,	"	
Heptachlor	ND	25		"		,,			
Heptachlor epoxide	ND	10	"		"		,	"	
Methoxychlor	. ND	75			"			,,	
Mirex	ND	50	"	"	,	"	,,	"	
Toxaphene	ND	100		"					
Surrogate: Tetrachloro-meta-xylene		104 %	46-	139	"	"	"	,,	
Surrogate: Decachlorobiphenyl		96.3 %	52-	141	"	"	"	"	
GEI07110654-04A (TP-ENV-521) (CQK	.0151-04) Soil	Sampled:	11/05/07 1	8:50 R	eceived: 11/	06/07 16:00			QC-2H
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10		19	"	"	"	**	
beta-BHC	ND	50	"	H	H	"	· ·	"	
delta-BHC	ND	50	**	11	**	"	II	H	
gamma-BHC (Lindane)	ND	50	**	"	**	"	11	**	
Chlordane	ND	100	ıı .	"	"	"	n	11	
4,4'-DDD	ND	75		"	н	11	H .	H	
4,4'-DDE	ND	75	11		n		**	н	

Fax: 916-638-4510

California Laboratory Services

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431

Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC#:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07110654-04A (TP-ENV-521) (CQK	0151-04) Soil	Sampled: 1	1/05/07 18:	50 Rec	eived: 11/0	6/07 16:00			QC-2H
4,4´-DDT	ND	75	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Dieldrin	ND	5.0	н	"	"	"	"	"	
Endosulfan I	ND	75	"	"	**	**	11	"	
Endosulfan II	ND	75	**	**	"	"	н	"	
Endosulfan sulfate	ND	75	**	**	•	"	"	*	
Endrin	ND	75		0	"	"	"	"	
Endrin aldehyde	ND	75	"	"	11	U .	"	"	
Heptachlor	ND	25	"	11	#	H	"	"	
Heptachlor epoxide	ND	10	11		**	n	"	"	
Methoxychlor	ND	75	**	**	"	n.	"	"	
Mirex	ND	50	**	11	u	ıı	"	"	
Toxaphene	ND	100	**	11	Ħ	n	11	11	
Surrogate: Tetrachloro-meta-xylene		117 %	46-13	30	"	"	"	"	
Surrogate: Decachlorobiphenyl		115 %	52-14		"	"	"	"	
GEI07110654-05A (TP-ENV-519) (CQK	(0151-05) Soil		•		ceived: 11/0	6/07 16:00			QC-2I
		5.0		5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Aldrin	ND	3.0 10	μg/kg "	,	" "	11700707	11	"	
alpha-BHC	ND ND	50	**		**	11	11	н	
beta-BHC	ND ND	50		"			"	11	
delta-BHC		50		"	**	"	"	"	
gamma-BHC (Lindane)	ND		,,	"	n .		H.	н	
Chlordane	ND	100		**	n	n n	"	**	
4,4'-DDD	ND	75 75	,		"	*	"	n n	
4,4'-DDE	ND	75 75			"		"	11	
4,4'-DDT	ND	75 5.0	"			. ,		н	
Dieldrin	ND	5.0			,,	"	"	n	
Endosulfan I	ND	75 75	"	,,	11		11	11	
Endosulfan II	ND	75	" "	,,	n	ü	11	н	
Endosulfan sulfate	ND	75 75		.,	"	11	11	"	
Endrin	ND	75				**	n		
Endrin aldehyde	ND	75	" "		,,	. ,,			
Heptachlor	ND	25	"			"	"	н	
Heptachlor epoxide	ND	10	"	"	"			11	
Methoxychlor	ND	75	"		. "	**	н	"	
Mirex	ND	50	"	"	"	"	**		
Toxaphene	ND	100	11				"	"	
Surrogate: Tetrachloro-meta-xylene		125 %	46-1	39	"	"		,,	
Surrogate: Decachlorobiphenyl		115 %	52-1		"	"	"	,,	
GEI07110654-06A (TP-ENV-515) (CQF	K0151-06) Soil	Sampled:	11/06/07 09	:00 Re	ceived: 11/	06/07 16:00	1		QC-21

CA DOHS ELAP Accreditation/Registration Number 1233

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units 1	Dilution	Batch	Prepared	Analyzed	Method	Notes
GEI07110654-06A (TP-ENV-515) (CQK0	151-06) Soil	Sampled: 11	1/06/07 09:0	00 Rec	eived: 11/0	6/07 16:00			QC-2H
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	"	11	"		"	"	
beta-BHC	ND	50	**		"	11	"		
delta-BHC	ND	50	11	**	"	**	11		
gamma-BHC (Lindane)	ND	50	"	11	"	n	"		
Chlordane	ND	100	"	11	11	"	н		
4,4'-DDD	ND	75	11	**	"	. "	11	. "	
4,4'-DDE	ND	75	**	"	11	**	"		
4,4'-DDT	ND	75	**	н	"	"	"		
Dieldrin	ND	5.0	n	"	"	"	"	"	
Endosulfan I	ND	75	n	"	"	"	**	"	
Endosulfan II	ND	75		н	H	11	11	#	
Endosulfan sulfate	ND	75		**	n	**	"	"	
Endrin	ND	75	*	**	**	11	"	11	
Endrin aldehyde	ND	75		H	"	"	"	"	
Heptachlor	ND	25	"	**	"	**	н	"	
Heptachlor epoxide	ND	10	**	**	**	"	#	II .	
Methoxychlor	ND	75			"	н	"	"	
Mirex	ND	50	"	11	"	н	n	. "	
Toxaphene	ND	100		н	н	11			
and the second s		145 %	46-13	19	"	"	"	"	QS-H
Surrogate: Tetrachloro-meta-xylene		137 %	52-14		"	"	"	"	
Surrogate: Decachlorobiphenyl	04#4 0#\ C ''				aivad: 11/	16:00			QC-2F
GEI07110654-07A (TP-ENV-516) (CQK)						11/06/07	11/08/07	EPA 8081A	
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/06/07	"	
alpha-BHC	ND	10	11	" "	"	n		"	
beta-BHC	ND	50	"	"		11	"		
delta-BHC	ND	50	"	"			11		
gamma-BHC (Lindane)	ND	50	**	"		**	11	**	
Chlordane	ND	100	"					**	
4,4'-DDD	ND	75	"	,,			**		
4,4'-DDE	ND	75	"	,	"		"		
4,4'-DDT	ND	75	II .	"	"	,,		:	
Dieldrin	ND	5.0	**		"	,	11	"	
Endosulfan I	ND	75	**	"	"		11	11	
Endosulfan II	ND	75	Ħ	"	" "	,,	u	п	
Endosulfan sulfate	ND	75	**	"		,	"	11	
Endrin	ND	75	"	"	н		"		
Endrin aldehyde	ND	75	**	"	, #		"	11	
	ND	25		**	**	11			

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC#:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GE107110654-07A (TP-ENV-516) (CQK	(0151-07) Soil	Sampled: 1	1/06/07 0	9:40 Re	ceived: 11/0	06/07 16:00			QC-2H
Heptachlor epoxide	ND	10	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
Methoxychlor	ND	75	"	"	11	"		"	
Mirex	ND	50	n	H	**		"	"	
Toxaphene	ND	100	"	'n	#	H	"	H	
Surrogate: Tetrachloro-meta-xylene		120 %	46-	139	"	"	"	"	
Surrogate: Decachlorobiphenyl		126 %		-141	"	" "	"	"	
GE107110654-08A (TP-ENV-517) (CQK	(0151-08) Soil				ceived: 11/0	06/07 16:00			QC-2H
Aldrin	ND	5.0	μg/kg	5	CQ09157	11/06/07	11/08/07	EPA 8081A	
alpha-BHC	ND	10	" "	"	"	"	**	**	
beta-BHC	ND	50		•	"	•	**	"	
delta-BHC	ND	50	н	"	**	#	11	n	
gamma-BHC (Lindane)	ND	50	**	**	n	"	11	**	
Chlordane	ND	100	11	**	n	"	**	**	
4,4'-DDD	ND	75		**	**	"	"	"	
4,4'-DDE	ND	75		••	n	**	11	· u	
4,4'-DDT	ND	75	**	11	"	11	n	n	
Dieldrin	ND	5.0		11	"	u	**	H	
Endosulfan I	ND	75			**	**	n	U	
Endosulfan II	ND	75	11	**	**	n	11	"	
Endosulfan sulfate	ND	75	**		11	11	"	n	
Endrin	ND	75		n	"	n	**	u u	
Endrin aldehyde	ND	75		"	**		"	111	
Heptachlor	ND	25	н	u	"	"	n	"	
Heptachlor epoxide	ND	10	**	**	"	**	H.	11	
Methoxychlor	ND	75	"	n		n	**		
Mirex	ND	50	"	"	**	**	"	n	
Toxaphene	ND	100	"	"	"				
Surrogate: Tetrachloro-meta-xylene		122 %	46	-139	"	"	"	"	
Surrogate: Decachlorobiphenyl		115 %		-141	"	"	"	"	

Fax: 916-638-4510

California Laboratory Services

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431

Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC #:

Polychlorinated Biphenyls by EPA Method 8082A

Analyte	Result	Reporting Limit	Units	Dilutio	n Batch	Prepared	Analyzed	Method	Note
GEI07110654-01A (TP-ENV-518) (CQK0151-	01) Soil	Sampled: 1	1/05/07 1	4:15 Re	eceived: 11/0	6/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20		"	**	n	"	"	
Aroclor 1232	ND	20		"	11	"	"		
Aroclor 1242	ND	20	**	"	"	11	"		
Aroclor 1248	ND	20	"	"	"	н	**		
Aroclor 1254	ND	20	**	"	"	"	"		
Aroclor 1260	ND	20	11						
Surrogate: Decachlorobiphenyl		77.9 %	50-	-150	"	"	"	"	
GE107110654-02A (TP-ENV-520) (CQK0151	-02) Soil	Sampled: 1	1/05/07	15:20 Re	eceived: 11/0	6/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	"	**	"	"	"	H	
Aroclor 1221 Aroclor 1232	ND	20	н	**	*		"	. "	
Aroclor 1242	ND	20	**	"	Ħ	**	11	11	
Aroclor 1248	ND	20		**	и	u u	11	Ħ	
Aroclor 1254	ND	20	**	"	**	u	**	"	
Aroclor 1260	ND	20	**		"		н		
Surrogate: Decachlorobiphenyl		77.4 %	50	-150	"	"	. "	"	
GEI07110654-03A (TP-ENV-522) (CQK0151	-03) Soil		1/05/07	16:05 R	eceived: 11/0	06/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	"		"	11	. "	H .	
Aroclor 1232	ND	20	•	"	**		**		
Aroclor 1242	ND	20		"	11		"	11	
Aroclor 1248	ND	20	"	"	"	"	11	"	
Aroclor 1254	ND	20		"	H	**	**		
Aroclor 1260	ND	20			"	"	"	11	
Surrogate: Decachlorobiphenyl		88.8 %	50)-150	"	"	"	"	
GE107110654-04A (TP-ENV-521) (CQK0151	-04) Soil	Sampled:	11/05/07	18:50 R	eceived: 11/	06/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	"	- "	` "	n .	"	11	
Aroclor 1221 Aroclor 1232	ND	20	**	"	н	**	"	II .	
Aroclor 1232 Aroclor 1242	ND	20	11	"	**	**	n	"	
Aroclor 1248	ND	20		•	u	"	**	H	
Aroclor 1254	ND	20	u	"	W W	**	**	Ħ	
Aroclor 1260	ND	20	"	"	11	"	11	11	gramma constitution of the constitution of
Surrogate: Decachlorobiphenyl		86.4 %	50	0-150	"	"	"	"	
GE107110654-05A (TP-ENV-519) (CQK015)									

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC #:

Polychlorinated Biphenyls by EPA Method 8082A

Analyte	Result	Reporting Limit	Units	Dilution	n Batch	Prepared	Analyzed	Method	Note
GEI07110654-05A (TP-ENV-519) (CQK0	151-05) Soil	Sampled: 1	1/06/07 07	:50 Re	ceived: 11/0	6/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	"	11	"	"	"	"	
Aroclor 1232	ND	20	**	"	"	"	"	11	
Aroclor 1242	ND	20	**	**	"	"			
Aroclor 1248	ND	20	u	**	"	"	"	"	
Aroclor 1254	ND	20	u .	*	"	"	"	"	
Aroclor 1260	ND	20	**	н	11	#	11	11	
Surrogate: Decachlorobiphenyl		75.5 %	50-1	50	"	"	"	"	
GE107110654-06A (TP-ENV-515) (CQK0	151-06) Soil	Sampled: 1	1/06/07 09	9:00 Re	eceived: 11/0	6/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	"	"	**	"	"	n	
Aroclor 1232	ND	20	н	**	"	Ħ	"	"	
Aroclor 1242	ND	20		"	H	"	n	"	
Aroclor 1248	ND	20	"	**	**	"	"	H	
Aroclor 1254	ND	20	,,	"	"	**	"	"	
Aroclor 1260	ND	20		H	"	"			
Surrogate: Decachlorobiphenyl		75.0 %	50-1	150	"	"	"	"	
GEI07110654-07A (TP-ENV-516) (CQK))151-07) Soil		1/06/07 09	9:40 R	eceived: 11/0	06/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	"	**	"	**	"	н .	
Aroclor 1232	ND	20	11	**	11	Ħ	"	**	
Aroclor 1242	ND	20	**	11	11	II	H	"	
Aroclor 1248	ND	20	n	"	11	"	**	"	
Aroclor 1254	ND	20	н	••	**	"	"	"	
Aroclor 1260	ND	20	11		II	II .			
Surrogate: Decachlorobiphenyl	The second contract of the second contract of	87.2 %	50-	150	11	"	"	"	
GEI07110654-08A (TP-ENV-517) (CQK	0151-08) Soil	Sampled: 1	1/06/07 1	0:35 R	eceived: 11/	06/07 16:00			
Aroclor 1016	ND	20	μg/kg	1	CQ09144	11/06/07	11/07/07	EPA 8082A	
Aroclor 1221	ND	20	**	"	. "	"	***		
Aroclor 1232	ND	20	"	"		11	"	"	
Aroclor 1242	ND	20	"	**	**	"	"	"	
Aroclor 1248	ND	20	"	"	*		"	"	
Aroclor 1254	ND	20	#	"	"	**	11	"	
Aroclor 1260	ND	20	11	H	11	11		H	and the second second
Surrogate: Decachlorobiphenyl		90.4 %	50-	150	"	"	"	"	

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431

Project: GEI07110654 Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC #:

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09254 - General Preparation										
Blank (CQ09254-BLK1)				Prepared	& Analyze	ed: 11/09/	07			
Cyanide (total)	ND	0.50	mg/kg							
LCS (CQ09254-BS1)				Prepared	& Analyze	ed: 11/09/	07		Market	
Cyanide (total)	4.16	0.50	mg/kg	5.00		83.3	75-125			
LCS Dup (CQ09254-BSD1)				Prepared	& Analyz	ed: 11/09/	07			
Cyanide (total)	4.09	0.50	mg/kg	5.00		81.8	75-125	1.82	25	
Matrix Spike (CQ09254-MS1)	So	urce: CQK0	151-01	Prepared	& Analyz	ed: 11/09/	07			
Cyanide (total)	2.70	0.50	mg/kg	5.00	ND	54.0	75-125			QM-
Matrix Spike Dup (CQ09254-MSD1)	So	urce: CQK0	151-01	Prepared	& Analyz	ed: 11/09/	07			
Cyanide (total)	2.90	0.50	mg/kg	5.00	ND	58.0	75-125	7.14	25	QM-

CA DOHS ELAP Accreditation/Registration Number 1233

11/09/07 13:22

RPD

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431

GEI07110654 Project: Project Number: GEI07110654

CLS Work Order #: CQK0151

Project Manager: Reyna Vallejo

COC #:

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09157 - LUFT-DHS GCNV										
Blank (CQ09157-BLK1)				Prepared:	11/06/07	Analyzed	: 11/08/07			
Aldrin	ND	1.0	μg/kg							
alpha-BHC	ND	2.0	"							
beta-BHC	ND	10	H							
delta-BHC	ND	10	"							
gamma-BHC (Lindane)	ND	10	**							
Chlordane	ND	20	11							
4,4′-DDD	ND	15	**					•		
4,4'-DDE	ND	15	"							
4,4′-DDT	ND	15	"							
Dieldrin	ND	1.0	**							
Endosulfan I	ND	15	"							
Endosulfan II	ND	15	"							
Endosulfan sulfate	ND	15	#							
Endrin	ND	15	"							
Endrin aldehyde	ND	15	**							
Heptachlor	ND	5.0	"							
Heptachlor epoxide	ND	2.0	**							
Methoxychlor	ND	15	"							
Mirex	ND	10	"							
Toxaphene	ND	20	**					-		
Surrogate: Tetrachloro-meta-xylene	7.28		"	8.33		<i>87.3</i>	46-139			
Surrogate: Decachlorobiphenyl	8.96		"	8.33		108	52-141			
LCS (CQ09157-BS1)	•			Prepared	l: 11/06/0′	7 Analyze	d: 11/08/0	7	no description and the second	
Aldrin	12.8	1.0	μg/kg	16.7		76.9	47-132			
gamma-BHC (Lindane)	12.4	10	"	16.7		74.5	56-133			
4,4'-DDT	16.7	15	"	16.7		100	46-137			
Dieldrin	14.4	1.0		16.7		86.2	44-143			
Endrin	14.9	15		16.7		89.4	30-147			
Heptachlor	13.1	5.0	#	16.7		78.6	33-148			
	5.25			8.33		63.0	46-139			
Surrogate: Tetrachloro-meta-xylene	6.98		,,	8.33		83.7	52-141			
Surrogate: Decachlorobiphenyl	0.98			0.22						

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110654 Project Number: GEI07110654

Project Manager: Reyna Vallejo

CLS Work Order #: CQK0151

COC #:

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09157 - LUFT-DHS GCNV										
LCS Dup (CQ09157-BSD1)				Prepared:	11/06/07	Analyzed:				
Aldrin	12.7	1.0	μg/kg	16.7		76.3	47-132	0.725	30	
gamma-BHC (Lindane)	12.2	10	"	16.7		73.2	56-133	1.70	30	
4,4'-DDT	16.4	15	**	16.7		98.6	46-137	1.45	30	
Dieldrin	14.2	1.0	11	16.7		85.5	44-143	0.892	30	
Endrin	14.6	15		16.7		87.8	30-147	1.73	30	
Heptachlor	12.9	5.0	"	16.7		77.2	33-148	1.83	30	
Surrogate: Tetrachloro-meta-xylene	5.00	The second secon	"	8.33		59.9	46-139			
Surrogate: Decachlorobiphenyl	6.59		"	8.33		79.1	52-141			
Matrix Spike (CQ09157-MS1)		urce: CQK0(80-01	Prepared:	11/06/07	Analyzed	11/08/07			and the same address.
Aldrin	15.5	5.0	μg/kg	16.7	ND	93.3	47-138			
gamma-BHC (Lindane)	12.9	50	"	16.7	ND	77.4	38-144			
4,4'-DDT	19.9	75	•	16.7	ND	119	41-157			
Dieldrin	17.2	5.0	**	16.7	ND	103	46-155			
Endrin	16.8	75	11	16.7	ND	101	34-149			
Heptachlor	15.1	25	"	16.7	ND	90.5	36-155	THE RESERVE OF THE PARTY OF THE		
Surrogate: Tetrachloro-meta-xylene	18.2		"	20.8		87.3	46-139			
Surrogate: Decachlorobiphenyl	20.5		" .	20.8		98.6	52-141			
Matrix Spike Dup (CQ09157-MSD1)		urce: CQK0	080-01	Prepared	: 11/06/07	Analyzed	: 11/08/07			
Aldrin	16.8	5.0	μg/kg	16.7	ND	101	47-138	7.57	35	
gamma-BHC (Lindane)	14.9	50	"	16.7	ND	89.1	38-144	14.1	35	
4,4'-DDT	19.8	75	**	16.7	ND	119	41-157	0.635	35	
Dieldrin	17.7	5.0		16.7	ND	106	46-155	3.36	35	
Endrin	16.9	75	**	16.7	ND	102	34-149	0.954	35	
Heptachlor	16.9	25	11	16.7	ND	101	36-155	11.3	35	
Surrogate: Tetrachloro-meta-xylene	23.3	-	"	20.8		112	46-139			
Surrogate: Decachlorobiphenyl	24.4		"	20.8		117	52-141			

California Laboratory Services

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21

Project: GEI07110654
Project Number: GEI07110654

CLS Work Order #: CQK0151

Sparks NV, 89431

Project Manager: Reyna Vallejo

COC#:

Polychlorinated Biphenyls by EPA Method 8082A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch CQ09144 - LUFT-DHS GCNV										
Blank (CQ09144-BLK1)				Prepared of	& Analyze	ed: 11/06/	07			
Aroclor 1016	ND	20	μg/kg							
Aroclor 1221	ND	20	"							
Aroclor 1232	ND	20	**							
Aroclor 1242	ND	20	"							
Aroclor 1248	ND	20	"							
Aroclor 1254	ND	20	**							
Aroclor 1260	ND	20	"							
Surrogate: Decachlorobiphenyl	7.05	and the second of the second o	"	8.33	the officer of the second	84.6	50-150			
LCS (CQ09144-BS1)				Prepared	& Analyz	ed: 11/06/				
Aroclor 1260	79.5	20	μg/kg	83.3		95.4	29-131			
Surrogate: Decachlorobiphenyl	8.02	41-01-04-04-04-04-04-04-04-04-04-04-04-04-04-	"	8.33		96.2	50-150			
LCS Dup (CQ09144-BSD1)				Prepared	& Analyz	ed: 11/06/	07		Commence of the commence of th	
Aroclor 1260	78.5	20	μg/kg	83.3		94.2	29-131	1.22	30	
Surrogate: Decachlorobiphenyl	7.37		"	8.33		88.4	50-150			
Matrix Spike (CQ09144-MS1)	So	urce: CQK0	080-02	Prepared	& Analyz	ed: 11/06/	/07			
Aroclor 1260	79.0	20	μg/kg	83.3	ND	94.8	29-131			
Surrogate: Decachlorobiphenyl	7.85	The second secon	"	8.33		94.2	50-150			
Matrix Spike Dup (CQ09144-MSD1)	So	ource: CQK0	080-02	Prepared	& Analyz	zed: 11/06	/07		***************************************	
Aroclor 1260	78.9	20	μg/kg	83.3	ND	94.6	29-131	0.110	30	
Surrogate: Decachlorobiphenyl	8.12		11	8.33		97.4	50-150			

Fax: 916-638-4510

11/09/07 13:22

Alpha Analytical, Inc.-Sparks 255 Glendale Ave.; Suite 21 Sparks NV, 89431 Project: GEI07110654 Project Number: GEI07110654

Project Manager: Reyna Vallejo

CLS Work Order #: CQK0151

COC #:

Notes and Definitions

QS-HI Surrogate recovery was greater than the upper control limit. A reanalysis was not performed since the analytes associated with the surrogate were not detected.

QM-5 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QC-2H The recovery of one CCV was greater than the acceptance limit. However, all analytes in the associated samples were ND; therefore a reanalysis was not performed.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

Report Attention TEL: (775) 355-1044 FAX: (775) 355-0406 **EMail Address**

Andrew Adinolfi (916) 631-4500 x aadinolfi@geiconsultants.com

EDD Required: No

Report Due By: 5:00 PM On: 21-Nov-07

WorkOrder: GEIC07110654

CA Page: 1 of 1

Sampled by: Client

Cooler Temp

Samples Received 06-Nov-07 Date Printed 11-Dec-07

Client's COC #: 17807

Job :

050115/TRLIA

Rancho Cordova, CA 95670

GEI Consultants

10860 Gold Center Dr. Ste. 350

QC Level: 1

Final Rpt Only

Sample ID GEI07110654-08A TP-ENV-517 GEI07110654-07A GEI07110654-06A TP-ENV-515 GEI07110654-04A GEI07110654-03A TP-ENV-522 GEI07110654-02A GEI07110654-05A GEI07110654-01A TP-ENV-518 **TP-ENV-521 TP-ENV-516 TP-ENV-519 TP-ENV-520** Sample ID SO SO SO SO SO Matrix Date SO SO 11/05/07 14:15 11/06/07 10:35 11/05/07 16:50 11/06/07 09:00 11/05/07 16:05 11/06/07 07:50 11/06/07 09:40 11/05/07 15:20 Collection No. of Bottles Alpha Sub TAT 6 6 6 6 5 6 6 6 8081_S PEST PEST PEST PEST PEST PEST PEST PEST 8082_S РСВ РСВ PCB PCB PCB РСВ PCB РСВ CYANIDE_T METALS_S
OTAL 0 Cyanide Cyanide Cyanide Cyanide Cyanide Cyanide Requested Tests Spec. list Spec. list Spec. list Spec. list Spec. list Spec. list Spec. list Spec. list Cyanide subbed to CLS Cyanide subbed to CLS Cyanide subbed to CLS Cyanide subbed to CLS Cyanide subbed to CLS Cyanide subbed to CLS Cyanide subbed to CLS Cyanide subbed to CLS 8081, 8082 and Total 8081, 8082 and Total 8081, 8082 and Total 8081, 8082 and Total 8081, 8082 and Total 8081, 8082 and Total 8081, 8082 and Total 8081, 8082 and Total Sample Remarks

Comments: Samples prelogged in order for Sac office to sub 8081, 8082 and Total Cyanide to CLS. Security seals intact. Frozen ice. Amended 12/11/07 @ 14:40 to add Hg to Metals list, per Andrew. LE:

Logged in by: Ediasa hatricia Alpha Analytical, Inc. Company OF. HI COLUM Date/Time

The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information:

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778 TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Andrew Adinolfi Phone Number (916) 631-4500 x aadinolfi@geiconsultants.com EMail Address

Rancho Cordova, CA 95670

Clent:

GEI Consultants

10860 Gold Center Dr. Ste. 350

Client's COC #: 17807

Job: 050115/TRLIA

QC Level: 1

= Final Rpt Only

WorkOrder: GEIC07110654

Page: 1 of 1

Report Due By: 5:00 PM On: 21-Nov-07

EDD Required: No

Sampled by: Client

Cooler Temp

Samples Received 06-Nov-07 **Date Printed** 07-Nov-07

		Andrewson and estimated detectables a contracted to see when it has a detect of the set of the second is some				Requested Tests	
Alpha Sample ID	Client Sample ID	Collection Matrix Date	No. of Bottles Alpha Sub TAT	8081_S 8082_S	CYANIDE_T OTAL	METALS_S	Sample Remarks
GEI07110654-01A	TP-ENV-518	SO 11/05/07	1 1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total
GEI07110654-02A	TP-ENV-520	SO 11/05/07 15:20	1 1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total Cyanide subbed to CLS.
GEI07110654-03A	TP-ENV-522	SO 11/05/07 16:05	1 1 10	PEST PCB	Cyanide	Spec. list	 8081, 8082 and Total Cyanide subbed to CLS.
GEI07110654-04A	TP-ENV-521	SO 11/05/07 16:50	1 1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total Cyanide subbed to CLS.
GEI07110654-05A	TP-ENV-519	SO 11/06/07 07:50	1 1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total Cyanide subbed to CLS.
GEI07110654-06A	TP-ENV-515	SO 11/06/07 09:00	1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total Cyanide subbed to CLS.
GEI07110654-07A	TP-ENV-516	SO 11/06/07 09:40	1 1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total Cyanide subbed to CLS.
GEI07110654-08A	TP-ENV-517	SO 11/06/07 10:35	1 1 10	PEST PCB	Cyanide	Spec. list	8081, 8082 and Total Cyanide subbed to CLS.

Comments:

Samples prelogged in order for Sac office to sub 8081, 8082 and Total Cyanide to CLS. Security seals intact. Frozen ice.:

Logged in by:	
(Main !) /
William Taia	Signature
Logged in by: (Mile Delle Bullet 1) This Dick Dick Alpha Analytical, Inc. 11/7/07 9/21	Print Name
Alpha Analytical, Inc.	Print Name Company Date/Time
11/7/07 9/21	Date/Time

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(Drinking Water) OT(Other) The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report. NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

		nplas
의 유	2	Collec
_	>	riples Collected From V
OTHER	NV	a Wa
-	× ×	Which Stato?
	Ī	3to?

17007

JOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of all client expense. The report for the analysis	P-Plastic expense. The rep	8-Brass fai dient e	T-Tedler r disposed o	T-Ta	0-Orbo	returne	S-Soil Jer	Voa Samph	: L-Liter V-Voa S- nade. Hazardous samples	Te made, Ka	AR - Air rangements a	or - Other ad unless other an	e c	ter results are the second	NYA - Waste OI - Other AR - Air Waste OI - Other AR - Air Waste OTE: Samples are discarded 60 days after results are reported unless other arrangements are reliable to the above samples is another by the control of the above samples is another arrangements are reliable to the control of the	ane disc bles is a	amples	OTE: S
									-			l			3		A	Key AO - Armeris
									\vdash					+			2	Fecalwad to
256	17 H () Y				125	1	THE		+		11/10/11						\$	Patinquished by
		1			*	7			+	[]	011			Mas	1 1/1/1	0.0		Received by
1010	15 8-07	_			1	7			4			1		`		7	10 S	Relinquished by
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	コーナー				5	9	P		_		SIN	lisa de	1	the second	X x des	t .		Ca namerata
1515	70			•	Consultants	Lysus.	GEI 6	\mathcal{Z}	_		Hart	Crett 1	Ta	1	China A	16	·	
Titrie	Date				Company	0			-		ALTERNATION THE PARTY OF THE PA		1	1		7		Relinquished by '
6									$\left \cdot \right $		42	D.i			Signature	١		
	::, ::	·			l													
11 S. C. C. C. C. C. C. C. C. C. C. C. C. C.		-	-		f	ŀ									ADDITIONAL INSTRUCTIONS:	FZ	S N	ADDI1
			4															
			_										T			1	1	
:													T					
`					 	-							†			\downarrow		
			_		+	+							+					
			\ 	5	<u> </u>	<	25		天		7	TP-ENV-517		400	•	8	10	10 >>
വ			7	7	く	<	25		天			15-CNN-C16	1	12		SK	11/6	150
Sub for ris	S. ★		<u>\</u>	く	ノブ	7	25		E			IN-ENV-SIS	+	200		3 8	116	2 8
			Š	<u>ر</u>	7	<u>.</u>	25		3			17-BN-219	7	2		20	3/11	
			2	3	<	<u> </u>	25		X				口	1		SAS	SIR	100
			4	辽	7		25		Ŧ		~	P-GNV-522	1	4	1	8	. =	
			4	N N	री		25		35			P-ENV-SLO	۴.	-Q	1	, 80	3	1000
			J	ব	7	2	25		£			P-ENV-518	1	110/cs40	HELDE	80	11/5	
REMARKS	Grand 10 b		Org	Toh	TI RI	>	Containers See below	33	727		Sample Description	Sample		(Company	Lab 90 Number	Belox.	H	
	/		900	RA V	PC	\rightarrow	Total and type of					Piczos Albertan	Papos /		Ag peopless	See Key	Date	S Tree
			5	M .	Be				-	7	8,4480	(530)57	Phone					T
* W **			しん	nek	**************************************			3	20.0	consultants, con	(HQ ge)	CHAM AGGRESS QUALIFIED	EME				City State 7to	Q
Required QC_Love!?	Rou	1	义 ろ	is	7		۲	511050		Job 6			2 2		7	Phyl.		Address
		Analyses Hequired	maryse	>	-												3	Cliens Karne
					7			4	35-0400	Fax (775) 355-0400				1 1	5		Phone Number	Phone
Page # 1 of	1 1	OTHER_		98	Ö	2-	-	11-5778	1da 8943	Sparks, Nevada 89431-5778		110	OK 215 30	CORON IN SI	010	C	City, State, Zio	City, Sta
1/807	Stato?	Samples Collected From Which State? AZ CA V NV W.4	Sea Fra	2 50 S	Sample,	> "	<u>.</u>		halytic	Alpha Analytical, Inc.			1	*	DNSUL	が	1	Name

4 the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the Ishaminan is limited to the families of the Ishaminan is limited to the families of the Ishaminan is limited to the families of the Ishaminan is limited to the families of the Ishaminan is limited to the families of the Ishaminan is limited to the families of the Ishaminan is limited to the families of the Ishaminan is limited to

Three Rivers Levee Improvement Authority Feather River Setback Levee Project Planned Resolution - Phase 1 Environmental Site Assessment Recommendations (Note 1)

RECOGNIZED ENVIRONMENTAL CONDITIONS

Findings	Recommendations	Trlia Planned Resolution
1. Site-wide: The application of pesticides (including insecticides, herbicides, and fungicides) containing hazardous substances is considered a recognized environmental condition under the ASTM Standard. However, permitted use of such pesticides is exempt from state and federal reporting as releases of hazardous substances to the environment. It is presumed that DDT detected in the potential Eastern Borrow Area was applied legally (before being banned), and therefore is not considered reportable under the California Health and Safety Code.	Recommendation: Testing for persistent pesticides is warranted for potential borrow material to evaluate its suitability for levee construction, because the material could potentially be exposed to the expanded floodway.	TRLIA has performed soil sampling and chemical testing for potential borrow areas in general conformance with the requirements for a Phase 2 Site Assessment per ASTM E1903. A memorandum was prepared and included in the January 2008 Geotechnical Data Report, Volume 5, Appendix F8). The study concluded that the chemical constituents evaluated were at non-detect or below local natural occurring levels, and therefore material from the borrow areas is environmentally suitable for use as borrow for the setback levee. <i>Completed.</i>
2. Site-wide: The presence of agricultural burn areas and debris areas described in Section 5.2.4 is considered a recognized environmental condition under the ASTM Standard. Several burn areas and debris areas were identified at the Site, many of them containing metal debris in addition to ash. The presence of hazardous substances from strictly agricultural burning is exempt from reporting as a release under state and federal regulations because agricultural burning is permitted at the Site. The presence of hazardous substances in burn areas where non-agricultural material is observed could potentially represent a reportable release, because the burning of such material is not permitted. Burn areas containing debris may represent a release if hazardous substances are present above reportable quantities specified in California Health and Safety Code section 25359.4.	Recommendation: Mixing or tilling ash and wood from agricultural burning (with no evidence of other materials) into existing topsoil, in setback area or areas of required project excavation. This is standard agricultural practice and can be accomplished by simultaneous removal of ash with topsoil as proposed for site redevelopment. However, ash material associated with debris piles should be segregated and removed from the Site as described below.	TRLIA's construction contractor will till ash from agricultural burning into the topsoil per the recommendations. See General Recommendations below for non-agricultural burning debris piles.

RECOGNIZED ENVIRONMENTAL CONDITIONS

Findings	Recommendations	Trlia Planned Resolution
3. Site-wide: The potential presence of mercury due to its known historic use regionally for gold mining represents a recognized environmental condition at the Site. Residual mercury concentrations may exist at site-wide or regional background levels that would not affect the proposed use of the Site.	Recommendation: Testing for mercury is not warranted because there is no evidence of a discrete ongoing source of contamination, localized depositions, or adverse conditions that may be caused by mercury due to localized depositions such as spills. Residual mercury and pesticide concentrations may exist at sitewide or regional background levels that would not affect the proposed use of the Site.	No action required. Testing for mercury was included in the borrow area pesticide investigation (see Item 1 above). Mercury was not detected at levels that would affect the proposed use of the Site.
4. Petroleum Storage/Apparent Petroleum-Stained Soil:		
707 Ella Avenue. Two aboveground diesel tanks of approximately 1,000-gallon capacity are located on this property. A small area of stained soil was observed beneath the northerly tank.	Recommendation: The tank location is immediately adjacent to the Site. If this area is disturbed for levee improvements, we recommend proper removal and disposal of the tanks and stained soil, and screening of soil in the area for the potential presence of residual petroleum contamination.	The area is outside of the current project boundary. No action required.
798 Plumas Avenue, Pearson property. An aboveground tank, oil/grease storage drums, and pails are located adjacent to the garage on the property. Soil in the area of the garage was stained.	Recommendation: If this area is disturbed for levee improvements, we recommend proper removal and disposal of the garage, tanks, and stained soil, and screening of soil in the area for the potential presence of residual petroleum contamination.	The area is outside of the current project boundary. No action required.

RECOGNIZED ENVIRONMENTAL CONDITIONS

Findings	Recommendations	Trlia Planned Resolution
3792 Feather River Boulevard (Naumes). An approximately 3 by 3-foot area of dark staining on the Naumes property was observed adjacent to an irrigation wellhead near the eastern Site boundary east of approximate levee Station 475+00. An open 5-gallon pail half-filled with apparent pump oil was observed adjacent to the wellhead.	Recommendation: If this area is to be disturbed for levee improvements, we recommend proper removal and disposal of contained materials, and screening soil in the area for the potential presence of residual petroleum contamination.	TRLIA's construction contractor will remove the stained soil for offsite disposal. Upon completion of excavation, TRLIA inspectors will perform soil screening to confirm petroleum staining was limited to the surface. If there is evidence of additional contamination (e.g. stained soils, petroleum odors, etc), TRLIA will conduct environmental sampling and testing of soil samples. If concentrations of contaminants exceed allowable levels, TRLIA will perform remedial activities.
3792 Feather River Boulevard (Naumes). Approximately 10 drums were observed on the Naumes property within a debris area near the eastern Site boundary, 1,000 feet west of approximate setback levee Station 180+00. Labeling indicates oil and agricultural product. No staining or evidence of leakage was apparent. Due to the threat of release posed by storage in an apparently uncontrolled area, the presence of these drums is considered a recognized environmental condition.	Recommendation: If this area is disturbed for levee improvements, we recommend proper removal and disposal of the tanks and stained soil, and screening soil in the area for the potential presence of residual petroleum contamination.	TRLIA's construction contractor will remove the drums for offsite disposal. Upon removal of drums, TRLIA inspectors will perform soil screening to assess soil conditions beneath the storage area. If there is evidence of contamination (e.g. stained soils, petroleum odors, etc), TRLIA will conduct environmental sampling and testing of soil samples. If concentrations of contaminants exceed allowable levels, TRLIA will perform remedial activities.
Waterside of levee, SSJDD property, bottom of levee access ramp opposite Ella Rd. (STA 480+00). Two empty drums containing apparent grease residue and stained soil were observed within and adjacent to a levee access ramp.	Recommendation: If this area is disturbed for levee improvements, we recommend proper removal and disposal of the drums and stained soil.	The area is outside of the project boundary. No action required.

POTENTIAL RECOGNIZED ENVIRONMENTAL CONDITIONS

Findings	Recommendations	Trlia Planned Resolution
2018 Feather River Boulevard, Flores Property. An unknown number of USTs were located on this property and removed sometime after 1988, according to EHD records. No other information was available, including whether indication of leakage was observed. A recognized environmental condition may exist.	Recommendation: If this area is disturbed for levee improvements, we recommend investigating for the potential presence of a buried tank, and screening of soil in the area for the potential presence of residual petroleum contamination.	TRLIA will conduct a Phase 2 investigation of the former UST site, consisting of excavation of test pits and field classification of soils encountered in the test pits. If there is evidence of contamination (e.g. stained soils, petroleum odors, etc), TRLIA will conduct environmental sampling and testing of soil samples. If concentrations of contaminants exceed allowable levels, TRLIA will perform remedial activities.
712 Murphy Road, Danna and Danna, Inc. A UST located at the former dairy farm at this address was removed around 1990. The condition of the tank and surrounding soil is not known.	Recommendation: If this area is disturbed for levee improvements, we recommend screening of soil in the area for the potential presence of residual petroleum contamination.	TRLIA will conduct a Phase 2 investigation of the former UST site, consisting of excavation of test pits and field classification of soils encountered in the test pits. If there is evidence of contamination (e.g. stained soils, petroleum odors, etc), TRLIA will conduct environmental sampling and testing of soil samples. If concentrations of contaminants exceed allowable levels, TRLIA will perform remedial activities.

POTENTIAL RECOGNIZED ENVIRONMENTAL CONDITIONS

Recommendations	Trlia Planned Resolution
Recommendation: If this area is to	The area is outside of the current
be purchased or excavated for levee	project boundary. No action required.
improvements, a permit for removal	
or for temporary closure of the UST	
± •	
1	
* 1	
-	The area is outside of the current
	project boundary. No action required.
_	project community the metion required.
· ·	
<u> </u>	
-	
• •	
• •	
<u>-</u>	Tile and is sected as Cal
	The area is outside of the current
-	project boundary. No action required.
potential UST.	
	Recommendation: If this area is to be purchased or excavated for levee

GENERAL RECOMMENDATIONS

General Recommendation	Trlia Planned Resolution
Removal of non-agricultural debris piles in setback area or areas of required project excavation, and disposal of the material at an offsite landfill. Removal of ash associated with debris piles in areas of required project excavation is also recommended. The ash and associated soil will likely be acceptable at a Class II landfill; however, analytical testing of soil will be required to fulfill landfill permit requirements and confirm that the material is not a Resource Conservation and Recovery Act (RCRA)-hazardous waste. We recommend analytical testing of soil beneath potentially hazardous debris including automotive debris or containers, after removal of the debris or containers, to confirm the condition of soil excavated or left in place and evaluate whether a reportable release exists.	TRLIA's construction contractor will remove and dispose offsite of all debris piles impacted by construction or in the setback area. Upon completion of debris removal, TRLIA inspectors will screen the underlying soil for contamination. If contaminated soil is encountered TRLIA will remove the contaminated soil and perform additional soil screening.
Clearing site structures of containers and AGTs containing petroleum or hazardous materials. We recommend analytical testing of soil beneath any AGTs or drums in setback area or areas of required project excavation, to confirm the condition of soil excavated or left in place and evaluate whether a reportable release exists.	TRLIA's construction contractor will remove and dispose offsite of all site structures impacted by construction or in the setback area. Upon completion of AGT, drums and stained soil (if encountered) removal, TRLIA inspectors will screen the underlying soil to confirm petroleum staining, where observed in soil beneath AGT fill pipes and drums, is limited to ground surface. If there is evidence of contamination at depth (e.g. stained soils, petroleum odors, etc), TRLIA will conduct environmental sampling and testing of soil samples. If concentrations of contaminants exceed allowable levels, TRLIA will perform remedial activities.

GENERAL RECOMMENDATIONS

General Recommendation	Trlia Planned Resolution
Monitoring of soil conditions in the area of dense brush, soil piles or plowings, irrigation wellheads, pump stations, aboveground storage tanks, and beneath garages if disturbed during construction. Visibility was limited in areas of dense brush, and there is a higher likelihood of subsurface soil contamination in equipment maintenance and fuel storage areas.	TRLIA inspectors will monitor soil conditions in areas impacted by construction or in the setback area during setback levee construction. If contaminated soil is encountered TRLIA will remove the contaminated soil and perform additional soil screening.
In setback area or areas of required project excavation: inventory, abandonment, and decommissioning of residential septic systems and leach fields, and residential and irrigation wells in accordance with regulations. These features may be a potential conduit for contaminant transport.	TRLIA's construction contractor will inventory and decommission residential septic systems and leach fields in areas impacted by construction or in the setback area in accordance with Yuba County regulations. TRLIA's construction contractor will destroy irrigation and residential wells in areas impacted by construction in accordance with Yuba County regulations. Irrigation wells in the setback area will be retained for restoration and ongoing agricultural operations.
In areas of required project excavation: excavation of test pits in leach field locations and performing visual screening for the potential presence of hazardous materials in underlying soil.	TRLIA inspectors will excavate test pits in leach field locations in areas impacted by construction and perform visual screening for the potential presence of hazardous materials in underlying soil. If contaminated soil is encountered TRLIA will remove the contaminated soil and perform additional soil screening.

Notes

1. Feather River Setback Levee, Phase 1 Environmental Site Assessment, dated August 2007. Findings and Recommendations are summarized in Section 7.1.